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Abstract 

A continuum mechanical model of coupled dislocation based plasticity and frac-
ture at finite deformation is proposed. Motivating questions and target applications 
of the model are sketched.

Keywords: Dislocations, Fracture, finite deformation

Introduction
Based on experience and insights gathered from the partial differential equation (PDE) 
based modeling of dislocation dynamics in Zhang et  al. (2015); Arora and Acharya 
(2020); Arora et al. (2020); Garg et al. (2015) and fracture (Acharya 2018, 2020; Morin 
and Acharya 2021), a coupled model of fracture and dislocation based plasticity at finite 
deformation is explored. Even though plasticity, whether fundamentally rooted in the 
mechanics of dislocations or in the phenomenology of slip, and fracture are much stud-
ied subjects, e.g.  (Freund (1998); Hutchinson (1979); Hirth and Lothe (1982); Bulatov 
and Cai (2006); Asaro (1983); Havner (1992), and the literature reviews in the papers 
mentioned above), to our knowledge, a full-blown continuum PDE model for their cou-
pled mechanics does not exist and can be useful in the understanding of the deforma-
tion, flow, and fracture of solids (e.g., metals or glaciers), and the mutual interactions 
of these phenomena as, e.g., addressed in the seminal work (Rice and Thomson 1974). 
While a full thermodynamically consistent model is presented, it is recognized that this 
is merely a beginning that sets the stage for future computation and analysis of a simply 
stated, but intricate, nonlinear model which is expected to have some bearing on its tar-
get applications.

An outline of the paper is as follows: in “Governing equations: mechanics” section the 
mechanical equations of the model are presented. In “Guidance for constitutive assump-
tions from the second law of thermodynamics” section a possible set of thermodynami-
cally consistent constitutive equations are proposed. In “Motivating questions for the 
development of the model” section some target problems motivating the development 
of the theory are sketched. It is understood that most of the questions posed are beyond 
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the reach of rigorous methods of PDE analysis, but it is felt that demonstrating a dynam-
ical theoretical setup where such questions can at least begin to be clearly posed and, 
consequently, at least be approached with finite-dimensional methods of approximation 
and rigorous mathematical guidance, even if short of the ‘proven-theorem’ variety, can 
be helpful in advancing the science of deformation, flow, and fracture of solids.

A few words on notation: tensor components (when invoked) are written with respect to 
the basis of a fixed Rectangular Cartesian coordinate system. All spatial differential operators 
are w.r.t. position on the current configuration. A superposed dot represents a material time 
derivative. X will be the alternating tensor and the curl operator acting on tensor fields may 
simply be thought of as row-wise curls of the corresponding matrix field of components.

Governing equations: mechanics
Based on the detailed kinematic motivations presented in Acharya (2011, 2018, 2020), 
the governing equations of the model are given by 

 where T = TT ensures balance of angular momentum, and

is the velocity gradient. In the above, T is the Cauchy stress, ρ is the mass density, v is the 
material velocity, f is the prescribed body force density, W is the inverse elastic distortion 
(a 2-point tensor field), V α is the dislocation velocity (vector field), Lp is a meso-macro-
scale construct not used in the fundamental microscale theory, the plastic distortion rate 
of dislocations (tensor field) that are ‘averaged out’ in terms of their charge (the meaning 
of this can be made precise in terms of microscopic quantities), c is the crack (vector 
field), and V t is the crack-tip velocity (vector field). The magnitude of the crack vector 
field encapsulates the degree of damage at a material point, while its orientation reflects 
that of the crack face normal at that point. An independent vector-valued field repre-
senting the crack-face normal as a fundamental kinematic ingredient in a PDE model of 
fracture was introduced in Acharya (2018); Steinke et al. (2019), and is beginning to be 
used (Morin and Acharya 2021; Hakimzadeh et al. 2022; Steinke et al. 2022). The dislo-
cation and crack-tip velocity fields are relative velocities of the motion of the dislocation 
density field α and the crack-tip field t, respectively, w.r.t. the material velocity. Defining 
the dislocation and crack-tip line density fields

Equations (1c) and (1d) imply 

(1a)ρ̇ + ρ div v = 0 (Balance of mass)

(1b)ρv̇ = div T+ ρf (Balance of linear momentum)

(1c)Ẇ +WL = −curlW × Vα + Lp (Evolution of inverse elastic distortion)

(1d)ċ + LT c = −curl c× Vt, (Evolution of the crack field)

L := ∇v

(2)−curlW =: α; −curl c =: t
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 Physically, Eqs. (1c, 1d) are motivated from the conservation of topological charge state-
ments Eqs. (3a, 3b) on assuming that a ‘free’ gradient that arises in the process in each 
case vanishes.

In the above, W and c are considered to be dimensionless physical quantities.

Guidance for constitutive assumptions from the second law 
of thermodynamics
We consider the free-energy density per unit mass

and require that the power supplied by external agents be greater than or equal to the 
rate of change of the sum of the free energy and kinetic energy of the body:

for any process in which the mechanical equations hold, where C is the (time-varying) 
current configuration of the body; and this is ensured by choosing constitutive assump-
tions for T ,V α ,V c, Lp that guarantee Eq. (5).

Now,

so that Eq. (5) can be expressed as

(3a)α̊ := α̇ + tr(L)α − αLT = −curl α × Vα + Lp

(3b)t̊ := ṫ + tr(L)t − Lt = −curl
(
t × Vt

)

(4)ψ = ψ(W ,α, c, t, ρ)

(5)

∫

∂C

(Tn) · v da+

∫

C

ρf · v dv ≥
d

dt

(∫

C

ρψ dv +

∫

C

1

2
ρ|v|2 dv

)

⇒

∫

C

T : L dv −

∫

C

ρψ̇ dv ≥ 0

ρψ̇ = ρ
(
∂Wψ : Ẇ + ∂αψ : α̇ + ∂cψ · ċ + ∂tψ · ṫ + ∂ρψρ̇

)

= ρ ∂Wψ :
(
−WL+ α × V α + Lp

)

+ ρ ∂αψ :
(
−α(L : I)+ αLT − curl (α × Vα + Lp)

)

+ ρ ∂cψ · (−LT c + t × V t)

+ ρ ∂tψ · (−t(L : I)+ Lt − curl (t × Vt))

+ ρ∂ρψ(−ρ(L : I)).

(6)
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Since the response function for ψ is invariant under superposed rigid body motions, it 
can be shown (see Appendix) that the term highlighted in blue in Eq. (6) is symmetric. 
Since the stress is symmetric due to balance of angular momentum, this also implies 
that the spin ( Lskw ) does not appear in the dissipation for the model making the latter 
invariant under superposed rigid motions. This is an important consistency check on the 
kinematic structure of the model.

Viewing Lp,V α , and V t (in the bulk and at the boundary) as the sole dissipative mecha-
nisms of the model, one recovers the stress-relation of the model from the consideration 
of energetically reversible, purely elastic processes:

Finally, a sufficient condition for non-negative dissipation is obtained by choosing the 
constitutive assumptions for the dissipative mechanisms to be in the ‘direction’ of their 
respective ‘driving forces,’ as exposed in Eq. (6), in the bulk and at the boundary.

A specific set of thermodynamically consistent constitutive assumptions

Define

(and we caution that F is not, in general, the gradient of a deformation w.r.t.a fixed 
global reference configuration). With I the fourth-order identity tensor on the space 
of symmetric second order tensors, the intact elastic modulus given by C , the damaged 
elastic modulus by C̃ , � > 0,µ > 0 the intact Lamé parameters, and �̃ and µ̃ the Lamé 
parameters for the damaged material, define

where �̃, µ̃ are positive, monotone decreasing functions of |r| from the intact values of 
the parameters to some small (positive) residual values. Let

ρ0 > 0 be the mass density of the intact, unstretched elastic material, and H(x) = 0 for 
x ≤ 0 and H(x) = 1 for x > 0 be the Heaviside function (an appropriately smoothed rep-
resentation will also suffice). We now define the strain energy density of the material 
accounting for damage due to cracking as (cf. Morin and Acharya (2021))

ψe has physical dimensions of energy per unit mass, and A ·4 B := AijklBijkl for fourth-
order tensors A, B.

(7)T = −ρ

{
WT ∂Wψ + (∂αψ : α)I + c ⊗ ∂cψ − ∂αψ

Tα + (∂tψ · t)I − ∂tψ ⊗ t + ρ∂ρψI
}
sym

.

F := W−1, E :=
1

2

(
FTF − I

)
, r := FT c,

C := �I ⊗ I + 2µI, C̃ := �̃(|r|)I ⊗ I + 2µ̃(|r|)I, �Cr := C− C̃,

r̂ :=
r

|r|
, R := r̂ ⊗ r̂ ⊗ r̂ ⊗ r̂, Er := r̂ · E r̂,

(8)

2ρ0ψe(W , c) = H(|r|)E :
[
C̃+ (1−H(Er))(�Cr ·4 R)R

]
: E + (1−H(|r|))E : CE

= H(|r|)
[
E : C̃E + (1−H(Er))(�Cr ·4 R)E

2
r

]
+ (1−H(|r|))E : CE.
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It can be shown (using arguments given in Acharya (2011); Morin and Acharya (2021)) 
that for a crack-only model with ψ = ψe(W , c) = ψe

(
FTF , c

)
 frame-indifferent, the 

‘elastic-distortion driven’ part of the Cauchy stress, say T(F) , is given by 
T(F) = −ρWT ∂Wψe = ρF∂EψeF

T , and the normal stress component to the crack, 
|c|−2c · T(F)c , at a damaged point where H(|r|) = 1 is given, up to a factor of ρ|r|

2

ρ0|c|2
 , by 

�̃(tr(E)− Er)+ �Er + 2µEr if the material point experiences compressive strain charac-
terized by H(Er) = 0 , and by �̃tr(E)+ 2µ̃Er if the point experiences tensile normal 
strain perpendicular to the crack.

We also introduce a crack-resistance energy density function η(|c|) with physical 
dimensions of energy per unit mass. A typical example reflecting no residual energy 
stored in damaged regions is

where a ≥ 0 (with physical dimensions of stress) and csat > 0 (dimensionless) are 
material constants. Another example, modeling Griffith type ‘surface energy’ (but not 
dependent on crack-length) is

With these constructs a physically reasonable constitutive assumption for the free 
energy density of our material is

where 0 < µα ,µt = O(µ) are material constants with dimensions of stress, and lα , lt > 0 
are material constants with dimensions of length. The lengths involved are expected to 
be much smaller than typical macroscopic dimensions.

Turning to the constitutive equation for the dislocation velocity in the bulk, motivated 
by the ‘driving force’ for dislocation motion in Eq. (6), define

and a dislocation mobility tensor of the form

where f = 0 or 1, and mgl ,mcl ≥ 0 are material constants with physical dimensions of 
length2

stress.time for f = 0 and length
stress.time for f = 1 . Then we propose the constitutive assumption

and note that when ψ is independent of α,

(9)ρ η(|c|) =

{
a
(
1− cos2

(
π

|c|
csat

))
, 0 ≤ |c| ≤ csat

0, |c| ≥ csat ,

(10)ρ η(|c|) =

{
a
(
1− cos2

(
π

|c|
csat

))
, 0 ≤ |c| ≤ csat

2

a, |c| ≥ csat
2 .

(11)ψ(W ,α, c, t, ρ) = ψe(W , c)+ η(|c|)+
µα l

2
α

2ρ
|α|2 +

µt l
2
t

2ρ
|t|2,

PK := X
{
−ρ ∂Wψ + curl (ρ ∂αψ)

}T
α, p :=

X : (Fα)

|X : (Fα)|
,

(12)M =
1

|α|f

(
mgl(I − p⊗ p)+mcl p⊗ p

)
,

(13)V α = MPK,
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which is the natural generalization of the form of the Peach-Koehler force of classical 
dislocation theory to finite deformation.

For the crack velocity we assume a simple isotropic mobility:

where mcr > 0 (with same physical dimensions as mcl or mgl ) is a material constant 
reflecting crack mobility and f = 0 or 1. Ignoring the contribution of the second term 
in the crack driving force, We note that the crack velocity is not restricted to be in the 
direction of t × c , allowing crack-tip motions off of the local crack-plane (defined by c⊥).

Equations (7), (11), (13), and (14) form the constitutive assumptions of a specific 
model.

Motivating questions for the development of the model
Here, we outline some fundamental physical problems that served as the motivation for 
the development of the theory, and which can be used to evaluate its predictive capabil-
ity through analysis and computation in the future.

‘Stokes flow’ from nonlinear elasticity with defects

Consider the quasi-static approximation for balance of linear momentum without body 
force:

Since this holds for all times, it can be shown that this is equivalent to

with div T = 0 initially. Assuming, for simplicity, that ψ = ψ(F , c) , we have that 
T = T (F , c) so that Ṫ = ∂FT : Ḟ + ∂cT · ċ , and combining with Eq. (1c) written in the 
form

and Eq. (1d) we obtain

Combining Eqs. (17) and (15) and defining

we have

PK = X
(
TT (Fα)

)
,

(14)V t =
mcr

|t|f

{
−ρ∂cψ + curl (ρ∂tψ)

}
× t,

div T = 0.

(15)div
[
(div v)T + Ṫ − TL

T

]
= 0,

(16)ḞF−1 = L− (Fα)× V α − FLp

(17)Ṫ = ∂FT :
[
L− (Fα)× V α − FLp

]
F + ∂cT ·

[
−LT c + t × V t

]
.

L := T ⊗ I − A+ ∂FTF
T − B

Aikrj = Tijδkr

Bijmk = ∂ck Tij cm,
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Evidently, the evolution of cracks and dislocations play the role of a ‘body-force forcing’ in 
the evolution of the deformation of the body.

In the presence of dislocations and cracks in general, but in the absence of their motion 
relative to the material, we have

with standard combinations of Dirichlet b.c. on the velocity on the boundary and Neu-
mann conditions related to the First Piola-Kirchhoff traction (w.r.t the current configu-
ration as the reference) rate.

Evidently, Eq. (19) does not reduce to an isotropic 4th-order tensor acting on the stretch-
ing tensor Lsym = D , but this system is energetically and mechanically (in terms of applied 
loads) reversible, whereas ‘viscous Stokes flow’ is only mechanically reversible.

Relation between defects in elastic solids and viscous fluids, and the mechanical load 

induced solid‑fluid transition

In an elastic solid, (dislocation) defects can be said to arise when the inverse elastic distor-
tion is no longer curl-free, i.e.

In a fluid one might say that defects arise when the velocity gradient develops a ‘singular 
part,’ thinking, roughly, that the velocity field is discontinuous across 2-d surfaces.

What might be the connection between these two ideas? Can such a connection, in the 
context of a specific constitutive model, be used to study the transition of a solid to a fluid 
due to a proliferation of defects?

Noting Eq. (1c) rewritten in the suggestive form of Eq. (16) and assuming Lp = 0 (a 
coarse-scale ‘homogenized’ effect), when the α field is a distribution of superposed core 
fields moving with velocity V α , α × V α very much looks like a singular distribution (when 
viewed macroscopically), and then Eq. (16) suggests that ḞF−1 - the elastic part of the 
velocity gradient (of the solid (fluid?)) - is its ‘regular part’ (the absolutely continuous part), 
with F(α × V α) being its ‘singular’ part.

Dislocation nucleation

Here we consider a model with no cracks and Lp = 0 . Assume ψ = ψ(F);T = T (F).

Quasi‑static balance of forces

The governing equations for v,W ,α are: 

(18)div(L : ∇v) = div
[
∂FT :

{
(Fα)× V α + FLp

}
F − ∂cT · (t × V t)

]

(19)div (L(F , c) : ∇v) = 0

−curlW = α �= 0.

(20a)div
[(

T ⊗ I − A+ ∂FTF
T

)
: ∇v

]
= div

[
∂FT :

{
(Fα)× V

α
}]

(20b)Ẇ +WL = α × V α; curlW = −α



Page 8 of 14Acharya  Journal of Materials Science: Materials Theory             (2024) 8:6 

 (although the fields v, W  suffice, nucleation related questions are best dealt with the α 
equation).

• Question: Do perturbations in α from a dislocation-free state α = 0 grow? Charac-
terize the instability in terms of the class of elastic distortion fields F and energy den-
sities ψ(F) . The constitutive choices for V α can be as in Eq. (13) and further simpli-
fied as necessary, e.g. assume isotropic mobility. The initial state satisfies div T = 0 
and loading is required.

Dynamic balance of forces

In Eq. (20a) replace Eq. (20a) with balance of linear momentum and balance of mass

and ask the same question as in “Quasi-static balance of forces” section.

Crack nucleation

Here we consider a model with no dislocation or plasticity, α, Lp = 0 , and 
ψ = ψ(F , c);T = T (F , c) . Here, W is a gradient on the current configuration and F is as 
well, on the reference defined by the inverse deformation which is a potential for W since 
curlW = 0.

Quasi‑static balance of forces

The governing equations for v, W , c, t are: 

 In the above Ẇ +WL = 0 ⇒ ḞF−1 = L = ∇v . As in the dislocation case, one of Eqs. 
(20e) and (20f ) suffices, but can be used as necessary.

• Question: Do perturbations in t from a crack-free state c = 0 =⇒ t = 0 grow? Char-
acterize the instability in terms of the class of elastic distortion fields F and energy 
densities ψ(F) . The constitutive choices for V t can be as in Eq. (14). The initial state 
satisfies div T = 0 and and loads are required.

Dynamic balance of forces

In Eq. (20d) replace Eq. (20d) with balance of linear momentum and balance of mass

and ask the same question as in “Quasi-static balance of forces” section.

(20c)α̇ + (div v)α − αLT = −curl
(
α × V α

)
.

divT = ρv̇; ρ̇ + ρdivv = 0

(20d)div
[(

T ⊗ I − A+ ∂FTF
T − B

)
: ∇v

]
= −div

[
∂cT ·

(
t × V t

)]

(20e)ċ + LT c = t × V t

(20f )ṫ + (div v)t − Lt = −curl
(
t × V t

)
.

divT = pv̇; ṗ+ p div v = 0
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Remark 1 For dislocation or crack nucleation from an undislocated or uncracked 
state, respectively, the corresponding evolution equations for the perturbation in dislo-
cation density ( ̃α ) and crack-tip density ( ̃t  ) are given by

where, for simplicity, we assume that i = 1, 2 and only straight dislocation/crack-tips in 
the 3-direction are allowed.
Based on the above, it seems that the distinction between crack and dislocation nuclea-
tion in this ansatz is a matter of nonlinear stability. We note that for the purposes of lin-
ear stability, B = 0 at the crack-free state.

Brittle‑ductile transition

This is a coupled crack-dislocation problem. The initial condition is that of an unloaded 
body with an edge crack as shown in Fig. 1.

• Question: Under, say Mode I, loading, i.e., Dirichlet conditions on velocity v2  = 0 on 
top boundary with bottom fixed as shown, does the stress field of the crack with a 
concentration at the notch-tip nucleate a dislocation (or a dipole) in the body which 
then moves (expands) causing plasticity (ductile behavior), or does the crack propa-
gate without any dislocation nucleation and propagation (brittle behavior)? Charac-
terize based on material parameters of the model (for a large body).

Macroscopic model of elasto‑viscoplasticity

Consider the dislocation-only model and define ε := lα
H  , recall Eq. (11), where H is a rep-

resentative dimension of the body and we will be interested in ε → 0 with lα fixed.

˙̃αi3 = −vr,r α̃i3,
˙̃t3 = −vr,r t̃3

Fig. 1 Schematic of a body with an edge crack under load. In the brittle-ductile transition, the question is 
whether under load the crack propagates or a dislocation (dipole) nucleates and moves
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Consider the system

subjected to a constraint on the initial condition

a boundary condition

where v̄ is a given function, and

• Question: (assuming existence of solutions for ε > 0 , or plausible demonstration of 
such in finite-dimensional computational settings), what is the limit model that arises as 
ε → 0 ? Here, the ‘limit model’ is the question of what model the evolution of the weak 
limits (roughly, all smoothly weighted space-time averages) of the fundamental fields of 
the model, say αε , vε here, satisfy. Since the microscopic equations are nonlinear and 
averages of nonlinear functions of field quantities ( say, e.g., αε × V ε ), do not equal the 
same functions evaluated on the averages of the said quantities, this requires the deter-
mination of the evolution of the weak limits of a further set of quantities, like say |αε|2 , 
defined on a sequence of solutions of the microscopic model. Moreover, to be useful, 
such evolution of the limits must be ‘closed’ in the sense that it must need information 
only on the state of only the limits of these quantities at any given time. In particular, 
there is good physical intuition behind the expectation that limε→0 α

ε × (V α)ε pro-
duces an extra term in the limit, related to the plastic strain rate produced by the expan-
sion of ‘sub-grid’ loops, the latter not sensed by limε→0 α

ε . In fact, this is the reason for 
the phenomenological introduction of the term Lp (and only this term as representative 
of the plastic strain rate) in macroscopic models. Is the limit parametrized by constantα?

Macroscopic model of damage

Consider the crack-only model and define ε := lt
H  , recall Eq. (11), where H is a repre-

sentative dimension of the body and we will be interested in ε → 0 with lt fixed.
Consider the system

0 = div T ε

Ẇ ε +W εLε = −curlW ε × (V α)ε

“ ⇔ ”

α̇ε + tr(Lε)αε − αε(Lε)T = −curl [αε × (V α)ε]

lim
ε→0

�αε
0�L2(�0)

= constantα ,

(21)vε(·, t) = v̄(·, t) on ∂C

1

vol(C)

∫

C

αε dv = 0 for all times.

0 = div T ε

ċ
ε + (Lε)T cε = −curl cε × (V t)ε

“ ⇔ ”

ṫ
ε + tr(Lε)tε − (Lε)tε = −curl

[
t
ε × (V t)ε

]
.
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In the above, the equivalence is not strict since the bottom equation implies the top 
one up to the gradient of a scalar field which is assumed to vanish based on the assump-
tion that microscopically the crack-tip flux can occur only in the presence of a crack-tip 
at a point (much like microscopic plastic strain rate/slipping rate at a point can arise 
only if a dislocation is present at a point).

Let the system be subjected to a constraint on the initial condition

a boundary condition

where v̄ is a given function, and

• Question: As in “Macroscopic model of elasto-viscoplasticity” section, what is the 
limit model as ε → 0 ? Does a natural connection arise with the type of coupled brit-
tle-ductile model of fracture proposed in Acharya (2020)?

Classical elasto‑viscoplasticity, viscoplasticity (a non‑Newtonian viscous fluid), as limit 

models

Consider the dislocation-only model from Eq. (1a). The classical, phenomenological 
model of elasto-viscoplasticity is given by the system Eq. (1a) with V α = 0 and Lp and 
T(F) specified by constitutive assumptions. The strain-rate decomposition Eq. (16), that 
follows from the conservation of Burgers vector Eq. (3a), then takes the form

Recall that the model does not involve a reference configuration of any sort and F is 
not a deformation gradient in general (customarily it is written as Fe , but a ‘multiplica-
tive decomposition’ of a deformation gradient from any reference plays no role in our 
development). Define

The constitutive equation for Lp specifies Dp and ωp ; in describing the elastoviscoplas-
ticity of polycrystals without texture, it is customary to assume

(but not for single crystals or strongly textured polycrystals).
Considering isotropic elasto-viscoplasticity for simplicity, a typical constitutive 

assumption for Dp is

lim
ε→0

�cε0�L2(�0)
= constantc,

vε(·, t) = v̄(·, t) on ∂C

1

vol(C)

∫

C

tε dv = 0 for all times.

ḞF−1 = L− FLp.

(ḞF−1)sym =: De; (ḞF−1)skw =: ωe

Lsym =: D; Lskw =: ω

(FLp)sym =: Dp; (FLp)skw =: ωp

ωp = 0
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where ν has physical dimensions of time, T ′ is the stress deviator, m > 0 is a dimension-
less constant called the rate-sensitivity, and g, a scalar, is the strength which may itself 
evolve; a common expression for metals is

where gs ≥ g0 > 0, θ0 > 0 material constants, and g0 is an initial value. For ice, the 
strength does not evolve, staying fixed at g = g0 . The rate-sensitivity, m, for ice is ∼ 4.0 , 
for metals usually small ∼ 0.01.

One obtains the classical theory of (rigid) viscoplasticity under the
Assumption: the elastic strain rate is ‘small’, i.e.,

so that

is assumed. For the typical power-law constitutive behavior Eq. (22), one then has

which also implies incompressibility, and one obtains the constitutive behavior of a non-
Newtonian viscous fluid

where p is the constitutively undetermined pressure.

• Question: Can classical elasto-viscoplasticity and rigid-viscoplasticity, including the 
constitutive assumptions Eqs. (22, 23), be recovered as particular limits of the model 
in “Macroscopic model of elasto-viscoplasticity” section and, if so, under what condi-
tions? Presumably one such condition is mcl = 0 in Eq. (12)?

• Question: Rate-independent behavior is assumed to arise in these models as m → 0 
in Eq. (22). Can this be justified as a limit when the rate of loading in Eq. (21) ˙̄v → 0?

Appendix
The argument used here may be called the ‘Ericksen equality’ for the theory, extending 
an argument to dynamics of Ericksen (Ericksen (1961), sec. VII) in the context of con-
tinuum mechanics of nematic liquid crystals.

(22)Dp =
1

ν

(
|T ′|

g

) 1
m T ′

|T ′|
,

(23)ġ =

{
θ0

(
gs−g
gs−g0

)
|Dp| g < gs

0 g = gs,

|De|

|Dp|
≪ 1,

D = Dp

νD =

(
|T ′|

g

) 1
m T ′

|T ′|
⇒ |T ′| = g(ν|D|)m; T ′ = g(ν|D|)m

D

|D|

T = −pI + g(ν|D|)m
D

|D|
,
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Consider a superposed rigid motion of the body on a given motion. For any pair of 
such motions, the value of the free energy density function at any material point remains 
unchanged at any arbitrarily chosen instant of time, s, i.e.,

Under such a superposed rigid motion, the fields W ,α, c, t, ρ transform as follows:

These transformation rules are consistent with the evolution statements Eqs. (1c), 
(1d), (2), (3a), if the field V α ,V t transform as objective vectors (and Lp transforms as an 
objective 2-point tensor from the current configuration to a local elastic reference that is 
unaffected by rigid motions of the body).

Now consider the free energy density Eq. (11), and arbitrarily fixed state (W ,α, c, t, ρ) 
at an arbitrary instant of time s and compute ψ̇(s) on a pair of rigidly associated motions 
as described above for which R(s) = I and Ṙ(s) = S , where S is an arbitrarily fixed skew 
tensor, so that Ṙ(s)RT (s) = S . By Eq. (24) the value of ψ̇(s) on both motions have to be 
equal which implies

But this is exactly the skew part of the term highlighted in blue in Eq. (6).
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