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Abstract 

The deformation behavior of Ti-6Al-4V titanium alloy is significantly influenced 
by slip localized within crystallographic slip bands. Experimental observations reveal 
that intense slip bands in Ti-6Al-4V form at strains well below the macroscopic yield 
strain and may serially propagate across grain boundaries, resulting in long-range 
localization that percolates through the microstructure. These connected, localized slip 
bands serve as potential sites for crack initiation. Although slip localization in Ti-6Al-4V 
is known to be influenced by various factors, an investigation of optimal microstruc-
tures that limit localization remains lacking. In this work, we develop a novel strategy 
that integrates an explicit slip band crystal plasticity technique, graph networks, 
and neural network models to identify Ti-6Al-4V microstructures that reduce the pro-
pensity for strain localization. Simulations are conducted on a dataset of 3D polycrys-
tals, each represented as a graph to account for grain neighborhood and connectivity. 
The results are then used to train neural network surrogate models that accurately 
predict localization-based properties of a polycrystal, given its microstructure. These 
properties include the ratio of slip accumulated in the band to that in the matrix, frac-
tion of total applied strain accommodated by slip bands, and spatial connectivity of slip 
bands throughout the microstructure. The initial dataset is enriched by synthetic data 
generated by the surrogate models, and a grid search optimization is subsequently 
performed to find optimal microstructures. Describing a 3D polycrystal with only a 
few features and a combination of graph and neural network models offer robustness 
compared to the alternative approaches without compromising accuracy. We show 
that while each material property is optimized through a unique microstructure solu-
tion, elongated grain shape emerges as a recurring feature among all optimal micro-
structures. This finding suggests that designing microstructures with elongated grains 
could potentially mitigate strain localization without compromising strength.

Keywords:  Titanium alloys, Strain localization, Targeted properties, Data-driven 
optimization, Slip bands

Introduction
As the most common wrought titanium alloy, Ti-6Al-4V finds extensive applications 
in industries such as aerospace, energy, biomedical, and chemical processing (Boyer 
2010; Williams and Boyer 2020). Like many other titanium alloys, plastic deforma-
tion in Ti-6Al-4V is mainly realized via formation of localized slip bands (Zhang et al. 
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2010; Echlin et al. 2016; Hémery et al. 2018; Lunt et al. 2016). Unlike pure titanium, 
however, the alloy does not readily twin unless subjected to very high strain levels 
during severe plastic deformation processes (Wang and Liu 2016; Yapici et al. 2006). 
At low and moderate strain levels, different slip systems including prismatic, basal, 
and pyramidal are commonly observed in Ti-6Al-4V (Echlin et al. 2016; Hémery et al. 
2018).

Although the formation of slip bands is the main underlying mechanism limiting 
material ductility and formability, the same phenomenon is believed to be responsible 
for crack initiation and propagation and, ultimately, material failure (Ghoniem et  al. 
2003). Ti-6Al-4V titanium alloy is not excluded from this trade-off between strength and 
toughness. While several theories have been proposed to explain it, a recent experiment 
on a wide range of polycrystalline materials with several crystal structures revealed that 
the trade-off has its root in microscopic strain localization within slip bands (Stinville 
et  al. 2022). It was shown that the reason why toughness of a material does not scale 
with its macroscopic strength is that stronger materials, i.e., with a higher yield strength, 
show a higher tendency to localize strain within intense slip bands. Several studies have 
shown that stress (or strain) concentrations associated with these localized slip bands 
can promote either slip transmission across the grain boundary or the development of 
microvolumes at the slip band/grain boundary junction (Ahmadikia et  al. 2021, 2023; 
Papanikolaou et al. 2017). These types of localized events can contribute to crack initia-
tion, which is the first step in compromising material toughness (Erel et al. 2017).

Over the past few decades, an extensive number of experimental studies have char-
acterized slip bands in Ti-6Al-4V titanium alloy (Echlin et al. 2016; Hémery et al. 2018; 
Lunt et al. 2016; Lavogiez et al. 2018; Ren et al. 2017). Most relevant to our work, in situ 
high-resolution scanning electron microscope, digital image correlation (HR SEM-DIC) 
was employed to investigate the relationship between strain localization and the micro-
structure of a rolled Ti-6Al-4V plate (Echlin et al. 2016). It was found that not only did 
slip bands form before the macroscopic yield point, but they serially transmitted from 
one grain to another within micro-textured zones, creating a long-range plastic strain 
localization phenomenon. Such a chain of intense localized slip bands has been corre-
lated with a high frequency of crack initiation events in low cycle fatigue of the alloy 
(Bridier et al. 2008; Le Biavant et al. 2002). A separate in situ SEM investigation of slip 
transfer in Ti-6Al-4V also confirmed that slip transfer occurs well below the conven-
tional 0.2% yield stress (Hémery et al. 2018). It was further revealed that the likelihood 
of slip transmission in the alloy significantly increases when there is a good alignment 
between the incoming and outgoing slip systems, and a high resolved shear stress on 
the outgoing slip system. The first condition emphasizes the role of grain orientation or 
texture, while the second manifests the critical role of the grain neighborhood on slip 
localization and transmission in Ti-6Al-4V. In conclusion, experimental studies confirm 
that the development and connectivity of slip bands in titanium alloys, including Ti-6Al-
4V, adversely affect their mechanical properties (Echlin et al. 2016; Dawson et al. 2021; 
Hémery et  al. 2019). Motivated by these studies, a key question is what combination 
of microstructural features promote slip localization in Ti-6Al-4V and, perhaps more 
importantly, what ideal set of features would give rise to a delocalized accommodation of 
the applied strain in this alloy?
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Aside from experimental works, a few computational studies investigated the develop-
ment of slip bands in Ti-6Al-4V, presenting an acceptable agreement between simula-
tion and experimental results (Zhang et al. 2010; Ahmadikia et al. 2021). However, they 
were limited to a single microstructure and did not explore the effect of microstructure 
on slip localization in the alloy. Given that there are many parameters involved, such as 
material parameters, microstructural features, loading conditions, etc., the space of con-
tributing factors to material properties is outstandingly high dimensional that pure com-
putational exploration would not be practical. In light of this, data-driven and machine 
learning approaches have recently been used to predict polycrystalline materials prop-
erties based on their microstructure characteristics (Liu et al. 2015; Mangal and Holm 
2019; Herriott and Spear 2020; Dai et al. 2021; Shu et al. 2022; Pagan et al. 2022; Hestrof-
fer et al. 2023). Most relevant to our work, a heterogeneous grain graph attention model 
(HGGAT) capable of realizing high-order feature embedding of the microstructure was 
employed to mine the relationship between the structure and elongation in magnesium 
alloys (Shu et al. 2022). Using a graph neural network (GNN) model trained on simu-
lation results from crystal elasticity finite element method (CEFEM), grain-scale elas-
tic response of polycrystalline Ti-7Al titanium alloy was predicted (Pagan et al. 2022). 
Retaining fundamental features of grains including their crystallographic orientation, 
size, and neighborhood, a similar GNN model was used in a separate study to predict 
overall stiffness and strength of α− Ti microstructures with varying textures (Hestroffer 
et al. 2023). Finally, random forest based machine learning models were used to predict 
stress hot-spot formation in 2D hexagonal close-packed (HCP) microstructures (Mangal 
and Holm 2019). It was found that both the crystallography, i.e., texture, and geometry 
based features are required to predict stress hot-spots.

While these machine learning models have demonstrated promising accuracy levels 
in predicting mechanical properties, they mainly focus on the overall material proper-
ties, such as average stress, and overlook the local plastic deformation events that play 
a critical role in the response of the material and its failure. In the case of slip bands, it 
is only recently that computational tools that can model these localized events in 3D 
microstructure settings have been developed and validated. Furthermore, most rel-
evant machine learning studies to date are limited to predicting material properties 
from its microstructure, leaving the microstructure optimization for superior properties 
unaddressed.

In this paper, we aim to identify the microstructural features that would minimize 
strain localization in Ti-6Al-4V titanium alloy. To this end, we strategically combine 
micromechanical simulations, graph networks, and neural network models to develop 
a framework significantly more efficient than conventional computational tools and 
more interpretable than machine learning methods, such as GNNs, that are commonly 
used to predict the properties of polycrystalline aggregates. First, slip band fast Fourier 
transform (SB-FFT) simulations are conducted on a dataset of 3D microstructures, and 
the resulting data is used to train surrogate neural network models. Grain neighbor-
hood and connectivity within the polycrystals are accounted for via graph-based rep-
resentation of polycrystalline microstructures. The surrogate neural network models 
exhibit satisfactory predictive performance for localization-based properties, such as 
the ratio of slip accumulated in the band to that in the matrix, fraction of total applied 
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strain accommodated by slip bands, and spatial connectivity of slip bands throughout 
the microstructure. These models are then used to generate synthetic data, providing 
an enhanced dataset ideal for a grid search optimization. Using only a few key features, 
such as texture and average grain size, to describe a 3D microstructure enhances robust-
ness and reduces computational cost compared to alternative approaches like CNN and 
GNN. Our optimization results find that each material property is optimized through a 
unique microstructure solution. All optimal solutions, however, share elongated grain 
shape as one of their features, rendering elongated grains as a valuable target parameter 
for the design of Ti-6Al-4V microstructures with reduced strain localization that can 
potentially mitigate the strength/toughness trade-off.

Methods
Figure  1 shows the workflow for the data-driven microstructure design approach 
used in this work. We combine explicit slip band micromechanical simulations on 
3D polycrystals with neural network (NN) models to design an optimal Ti-6Al-4V 
microstructure featuring strain delocalization. We first generate a dataset of 3D poly-
crystals with different microstructural characteristics and perform crystal plasticity 
simulations to calculate the mechanical response of each polycrystal, from a locali-
zation perspective. We then formulate a set of localization-based properties to opti-
mize, with respect to our goal of delocalizing strain. Subsequently, we design and 
tune separate NN models to predict these properties for a microstructure, given its 
characteristics such as texture, grain size and shape. With the high accuracy of these 
models established, we employ them to generate additional data to enhance our initial 
dataset of 3D microstructures. Finally, utilizing the expanded dataset, we perform a 
grid search optimization to identify optimal microstructures, each contributing to the 
improvement of a specific localization-based property.

Fig. 1  Flowchart for design of a microstructure with limited slip localization and transmission likelihood. The 
workflow consists of data generation using DREAM3D and explicit slip band micromechanical calculations, 
design of surrogate neural network for predicting localization-based properties, and microstructure 
optimization via simple grid search
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Data generation and model set‑up

Our dataset comprises a total of 360 polycrystalline microstructures, each generated 
in DREAM3D (Groeber et al. 2014) with a set of unique microstructural features. The 
first two features included are the mean ( µ ) and standard deviation ( σ ) of the grain 
size distribution calculated from all grains within the microstructure. To accommo-
date a wide range of grain sizes, we consider µ = [2, 2.33, 2.66, 3, 3.5] . Furthermore, 
any value from [0.001, 0.01, 0.1, 0.3] can be assigned to σ , introducing very small to 
significant variations in grain size within the microstructure. It should be noted that 
the parameter µ does not represent the actual grain size mean but the average value 
of the log-normal grain size distribution. Similarly, σ is the standard deviation of the 
log-normal distribution, i.e.,

where ESDave can be deemed as the actual grain size in terms of equivalent sphere diam-
eter. The set of possible values for µ , therefore, yields grains that may have an ESD of 
approximately 7.4, 10.3, 14.3, 20.1, and 33.1 voxels. Figure 2 shows how µ and σ control 
the overall size and dispersion in size of the grains within the microstructure.

Next, we include in our features the morphology of the grains by allowing either 
equiaxed or rolled grains to comprise the microstructure. This feature is controlled by 
the aspect ratio (AR) of the grains, to which any value from [1, 3, 8] can be assigned. 
Figure  3 shows example microstructures with equiaxed ( AR = 1 ) and elongated 
grains ( AR = 3, 8 ). Although larger values of AR can be considered, they may intro-
duce problems during the compilation and packing of grains in DREAM3D.

The fourth and last microstructural feature included is the texture. Figure  4 pre-
sents the pole figures for six unique textures from which the orientation of the grains 
is sampled. Among them, texture C is an experimentally rolled titanium texture 
(Wang et al. 2020) and texture F is a uniformly random (no) texture. The remaining 
textures are synthetic and inspired by the literature on titanium alloys (Priddy et al. 
2017; Peters et al. 1983; Peters et al. 1984; Lütjering et al. 1998; Smith 2013).

(1)ESDave = exp(µ+ σ 2/2)

Fig. 2  Variations in the mean and standard deviation of the grain size distribution within a few example 
microstructures. Columns from left to right correspond to µ = 2 , 2.66, and 3.5, while the top and bottom 
rows show polycrystals with σ = 0.001 and 0.1, respectively
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Explicit slip band modeling

Each 3D polycrystal generated by DREAM3D is discretized into 100 × 100 × 100 ( x × y× z ) 
voxels, as shown in Fig. 5a. A narrow volume serving as the slip band domain is manually 
added to each grain within the microstructure. In actuality, where slip bands form is ran-
dom and determined by a number of defect and local stress variables. In the model, the 
designated slip plane in each grain is located at the grain centroid to reduce randomness, 
to simplify the microstructure-generation process, and to ensure that slip can fully localize, 
provided that the loading and neighborhood conditions favor such localization. Moreover, 
each slip plane is spatially oriented such that it aligns with the grain’s most favorable slip 
system, given the macroscopic loading direction. Material parameters for Ti-6Al-4V includ-
ing the elastic constants and critical resolved shear stress (CRSS) for different slip modes 
are listed in Table  1. Considering that prismatic slip has the lowest CRSS value, the slip 
plane in each grain lies on the prismatic plane with the highest Schmid factor, as shown in 
Fig. 5b. The microstructure is surrounded by a 20-voxel-thick homogeneous layer with uni-
formly distributed crystal orientations in all directions to ensure that the spatially resolved 
micromechanical fields are unaffected by the periodic nature of the imposed boundary con-
ditions (Fig. 5c).

To allow the slip bands to develop in each polycrystal, we employ the SB-FFT model 
(Ahmadikia et  al. 2021). SB-FFT is a full-field, crystal plasticity model that extends the 
elasto-viscoplastic fast Fourier transform (EVP-FFT) technique (Lebensohn et  al. 2012), 
to permit the development of discrete, crystallographic slip bands in grains. These models 
have been extensively used in simulations of slip bands (Ahmadikia et al. 2021, 2023, 2024; 
Wang et al. 2016; Marano et al. 2019; Marano and Gélébart 2020) and deformation twin-
ning (Kumar et al. 2016a, b, 2019; Kumar and Beyerlein 2020; Hu et al. 2021). We review 
them briefly here and refer the reader to the original articles, Lebensohn et al. (2012) and 
Ahmadikia et al. (2021), for more detailed information about these computational schemes.

The constitutive relationship of an elasto-viscoplastic material is given by,

where σ (x) is the Cauchy stress tensor, C(x) contains anisotropic elastic constants, and 
ε(x) , εe(x) , and εp(x) represent the total, elastic, and plastic strain tensors, respectively, 

(2)σ (x) = C(x) : εe(x) = C(x) : ε(x)− ε
p(x)

Fig. 3  Variation in grain shape is manifested by a few example microstructures. From left to right, polycrystals 
are generated with a grain aspect ratio of AR = 1 (equiaxed), 3 (elongated), and 8 (severely elongated). In 
polycrystals with AR > 1 , the long axis of grains are randomly oriented
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calculated at any material point x . An implicit time discretization scheme, evaluates the 
stress state in material point x at time t +�t as follows:

Following the Hutchinson-type simple power law constitutive equation, the viscoplas-
tic strain-rate tensor ε̇p(x) is calculated given the stress tensor σ (x) through a sum over 
N active slip systems, as:

where γ̇ s(x) and τ sc (x) are respectively the shear rate and the critical resolved shear stress 
(CRSS) for slip system s at material point x , γ̇0 is a normalization factor, and n is the 
stress exponent. Finally, ms = (bs ⊗ n

s + n
s ⊗ b

s)/2 denotes the Schmid tensor calcu-
lated for slip system s, where unit vectors bs and ns show the direction of the Burgers 
vector and slip plane normal, respectively.

The SB-FFT model used in this work allows for incremental development of a dis-
crete slip localization within a grain. This is accomplished by assigning a softening, rate-
dependent constitutive law to the material points within a preselected narrow domain, 
i.e., the slip band domain as shown in Fig. 5b. Prior selection of such domain, however, 
does not necessarily enforce the slip band to develop. Instead under an applied macro-
scopic strain, the strain within the domain is available to evolve, at a rate that depends 
not only on its softening law, but also the properties of the host grain and its local neigh-
borhood. Slip resistance in material points outside of the slip band domain, referred to 
as the matrix, remains constant throughout the simulation. The rate by which the criti-
cal resolved shear stress τ sc for any slip system s in the slip band domain decays depends 
linearly on the rate of slip ( ̇γ s ) accumulated on that system, as in the following:

(3)σ
t+�t(x) = C(x) :

(

ε
t+�t(x)− ε

p, t(x)− ε̇
p, t+�t

(

x, σ t+�t
)

�t
)

(4)ε̇
p(x) =

N
∑

s=1

m
s(x)γ̇ s(x) = γ̇0

N
∑

s=1

m
s(x)

(

|ms(x) : σ (x)|

τ sc (x)

)n

sgn
(

m
s(x) : σ (x)

)

(5)τ s, t+�t
c (x) =

{

τ s, tc (x)− D0τ
s, t
c (x)

∣

∣γ̇ s, t(x)
∣

∣�t : x ∈ SB domain

τ s, tc (x) = τ s, 0c (x) : x /∈ SB domain

Fig. 5  a An example 3D polycrystal is generated by DREAM3D and discretized into 100 × 100 × 100 
( x × y × z ) voxels. b A narrow slip band domain is added to each grain, aligned with the most favorable 
prismatic slip system in the grain. c The polycrystal is surrounded by a 20-voxel-thick buffer layer in all 
directions. This layer is homogeneous and comprised of uniformly distributed crystal orientations
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In (5), coefficient D0 is a material constant that controls the rate of softening. D0 is set 
to 64, consistent with the model calibration performed for Ti-6Al-4V alloy elsewhere 
(Ahmadikia et al. 2021). The polycrystal setup is strained along the y-axis, up to a mac-
roscopic strain of 1%, while the normal stress components along the x- and z-axis are 
enforced to be zero. To avoid numerical instabilities, a lower limit for τ sc  equal to 10% of 
its initial value is set for all slip systems.

Defining localization‑based property objectives
We begin this section by presenting results of the micromechanical simulations with SB-
FFT model from which we define three objectives related to the localization behavior 
of the material to achieve in our optimization process. Figure 6a shows the distribution 
of the normal strain along the loading direction resolved on two surfaces of an example 
microstructure subjected to 1% total strain. While strain localization within slip band 
domains is evident throughout the sample, localization intensity varies from one grain 
to another and, more interestingly, some grains did not develop significant localization. 
Under the 1.0% far-field strain applied to the polycrystal, the simulated range for strain 
within the slip band domains is consistent with the experimental observations from the 
same alloy (Echlin et al. 2016). Furthermore, the strain map in Fig. 6a demonstrates spike 
in strain within some grains where the slip band active in a neighboring grain impinged 
on the shared grain boundary. The study Ahmadikia et al. (2021) report similar localized 
stress concentrations ahead of an active slip band. Such stress or strain concentrations 
can potentially trigger a new slip/twin band in the grain (Ahmadikia et al. 2023). It can 
explain the formation of a long chain of bands seen to eventually lead to material failure 
(Echlin et al. 2016).

To better understand and compare different localization responses, Fig.  6b and c 
shows the histogram of the strain in loading direction across all grains from two micro-
structures, one sampled from texture D and the other from texture E. In these plots, 
orange and blue bars represent the strain accommodated by the matrix and slip band 
domain, respectively. Figure 6b indicates that most grains within the polycrystal accom-
modate a strain level approximately equal to the 1.0% far-field strain. Furthermore, in a 
large fraction of grains, both the matrix and the slip band domain experience the same 
strain levels, manifesting this case as a microstructure with low localization or delocal-
ized strain state. In stark contrast, Fig. 6c presents a microstructure in which most grains 
accommodate less than 1.0% strain in their matrix and significantly larger strains in their 
slip band domains. We consider this case a polycrystal with a high degree of localization.

The key question to address next concerns the combination of microstructural fea-
tures that lead to a localized strain response. More importantly, is there an ideal set 
of features that gives rise to the accommodation of the applied strain in a delocal-
ized manner? To address these questions, we define and formulate a set of property 
objectives associated with the localization response of the polycrystal. Intuitively, the 
first quantity to consider is the slip ratio (SR), which evaluates the ratio of the strain 
accommodated by the slip band domain to that accommodated by the parent matrix 
in each grain. A case of perfectly homogeneous deformation yields SR = 1 , while 
SR > 1 indicates some extents of localization. Figure 7a shows the cloud distribution 
of the strain in loading direction in two grains within the same microstructure. The 
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top grain manifests a strong, pronounced slip localization within its band domain, 
hence a high SR, while the bottom grain accommodates the imposed strain homo-
geneously with SR ≃ 1 . Similar to the comparison made in Fig. 6, the histograms in 
Fig. 7b and c distinguish a microstructure with a delocalized strain state ( SRave = 1.21 ) 
from a highly localized strain response ( SRave = 5.8 ). Motivated by these results, we 
therefore define our first objective to design a microstructure with minimal slip ratio 
when averaged over all grains, i.e.,

where f  is the feature vector including grain size average ( µ ), its standard deviation ( σ ) 
and shape (AR), and the texture (Tex) of the microstructure encompassing N grains. Fur-
thermore, εSB and εM are respectively the strain in loading direction within the slip band 
domain and the matrix of each grain. For simplicity, we hereinafter drop the subscript 
“ave” and refer to the average slip ratio for a microstructure as “SR”.

Next, we define as our second localization-based property the fraction of total 
applied strain that is accommodated within all slip band domains throughout the 
microstructure, and denote it by EinSB . While this property was anticipated to be 
closely correlated with the SR defined earlier, our statistical analysis revealed that it 
is not entirely the case as the correlation between SR and EinSB is not monotonically 
increasing. For instance, within the dataset there is a microstructure with SR < 2 and 
EinSB ≃ 0.5 , while another microstructure accommodates a significantly lower frac-
tion of the applied strain within its slip bands ( EinSB ≃ 0.2 ) with an SR value of 4. 
The key distinction between these two cases is that the former tends to accumulate 
the larger share of the applied strain within its many activated slip bands such that 
each band is only moderately localizing. On the contrary and perhaps due to the lack 
of enough active slip bands, the latter microstructure accommodates the imposed 
deformation via its few, yet highly intense slip bands. Considering that a lower EinSB 
would mean that a larger share of the applied strain is accommodated homogeneously 
within the matrix, we can define the second objective to design a microstructure that 
minimizes the fraction of strain in slip bands, i.e.,

Finally, we consider as our third localization-based property the spatial connectiv-
ity of the slip bands activated throughout the microstructure. As mentioned in the 
Introduction, serial transmission and connection of slip bands across the polycrystal 
has been experimentally evidenced to be the primary cause for initiation, easy coa-
lescence, and growth of micro-cracks in Ti-6Al-4V titanium alloy (Echlin et al. 2016; 
Le Biavant et al. 2002). Therefore, an intuitive approach to delay crack formation and 
ultimate failure of the material is to have slip bands activated far from one another 
within the microstructure. This will minimize the risk of intense slip bands coalesc-
ing to form detrimental long-range plastic strain localization. A simple approach for 
defining a relevant property is to consider the Euclidean distance between any two 

(6)minimizef∈{µ,σ ,AR,Tex} SRave =
1

N

∑

N

εSB

εM
,

(7)minimizef∈{µ,σ ,AR,Tex} EinSB =

∑

N εSB
∑

N (εM + εSB)
.
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slip bands in the microstructure. Nevertheless, doing so would fail to take account 
of grain connectivity within the microstructure. It has been demonstrated in previ-
ous research that the stress concentration ahead of an active slip band can trigger a 
new set of bands in the grain neighbor in a transmission event across the shared grain 
boundary (Ahmadikia et al. 2021, 2023). Experimental observations from Ti-6Al-4V 
also emphasize the role of grain connectivity in the formation of long-range strain 
localization (Echlin et al. 2016). For a slip band to link with another, it needs to seri-
ally transmit from one grain to the nearest neighbor, naturally following the grain 
connectivity within the microstructure. Therefore, using Euclidean distance between 
two grains is clearly not ideal. To circumvent this and to account for natural progres-
sion of slip bands through the microstructure, we apply a graph network to each poly-
crystal, using the Python package NetworkX (Hagberg et al. 2008). Figure 8a shows a 
simplified version of such a graph, including only surface-visible grains in the poly-
crystal. Each grain is represented by a node located at the centroid of the grain. There 
is an edge between two nodes if the two corresponding grains are nearest neighbors. 
It follows that a more reasonable approach to account for the spatial distance between 
two grains within the microstructure is to evaluate the shortest path between their 
corresponding nodes in the graph.

We further incorporate slip band intensity into our third localization-based property 
to place a greater emphasis on intense localization events within the microstructure. In 
Fig. 8a grains within which a more intense slip band is activated are visualized by larger 
nodes with darker shades of red. Each node also retains the slip ratio (SR) of the grain 
as its attribute. When calculating the distance between the two most intense slip bands, 
SR1 and SR2 in this example, the shortest path indicated by bold arrows is divided by 
the product of slip ratio of the two grains. This approach yields a lower adjusted dis-
tance between two intense slip bands, and therefore rating them more alarming, com-
pared to two slip bands with the same physical distance but lower intensities. Finally, the 
adjusted distance is normalized by the average grain size, ESDave , to obtain a quantity 

Fig. 8  a A simplified version of a graph including only surface-visible grains in the polycrystal. Each node 
represents a grain, with its size and color intensity proportional to the grain’s slip ratio. An edge between two 
nodes indicates that two grains are nearest neighbors. Considering the grain neighborhood, bold arrows 
show the shortest path between two grains with intense slip bands. b Overall architecture of the neural 
network model developed here, which includes an input layer, multiple fully-connected hidden layers with 
ReLU activation function, and an output regression layer. The output layer has only one neuron to predict any 
of the three properties
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that is comparable across fine and coarse grain polycrystals. In a sense, the normalized 
quantity indicates the number of grains across which one slip band needs to traverse to 
connect to the other band. We thus define the third objective to design a microstructure 
that maximizes the hot distance (dH), the average normalized, adjusted distance between 
slip bands, as in the following,

Neural network model and microstructure optimization
With the four microstructural features considered as input parameters and three locali-
zation-based properties introduced in (6), (7), and (8) as labels, this section describes the 
design and optimization of three separate neural network (NN) models to predict the 
localization response of a polycrystal based on its microstructure.

NN architecture and hyper‑parameter tuning

Figure  8b shows the overall architecture of the NN we employ to predict localization 
in the polycrystalline deformation response. The NN developed here is a simple multi-
layer perceptron (MLP) consisting of an input layer with four neurons, multiple fully-
connected hidden layers with rectified linear unit (ReLU) activation function, and a 
post-processing regression layer. Alternatively, more smooth activation functions can 
be used that provide the possibility for application of non-gradient optimization meth-
ods. However, due to its simplicity, ReLU activation function is used in the present work. 
Parameters of the model associated with fully-connected layers are trained with the 
Adam adaptive learning rate optimization algorithm (Kingma and Ba 2014), using mean-
squared error (MSE) as the loss function. We assign 70% of the data for training, with 
the remaining 30% kept unseen by the model for testing to assess its generalization capa-
bility. From the training data, 10% is reserved for cross-validation.

To optimize the performance of our neural network model, we conduct hyper-param-
eter tuning, focusing on all parameters except the base architecture of the model. These 
parameters include number of layers, learning rate, number of epochs, batch size, and 
number of neurons in each layer. We employ SigOpt (Clark and Hayes 2019) and choose 
the MSE as our loss metric. SigOpt is an optimization tool that explores a grid of poten-
tial values for each hyper-parameter, in order to minimize the loss via Bayesian opti-
mization. Table 2 provides a summary of the parameters and their respective potential 
values. For each NN, we perform a total of 300 separate experiments, each employing 
a unique hyper-parameter combination. Upon the completion of all experiments, we 
select the top candidate model to continue our analysis with the prediction of the locali-
zation response of a polycrystal. Listed in Table 2 are also the optimal values of hyper-
parameters that produce a NN model with the lowest error for predicting each property.

Surrogate NN and grid search optimization

With the basics of the NN model established and its hyper-parameters optimized to pro-
duce the lowest error, we train each model on a subset of our dataset of 3D polycrystal-
line microstructures. To reiterate, each model receives four features as input, including 

(8)maximizef∈{µ,σ ,AR,Tex} dH =
1

ESDaveN

∑

i,j∈[N ]

shortest path between grains i, j

SRiSRj
.
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the average and standard deviation of the grain size distribution, grain shape, and tex-
ture. The output for each model is one property among the slip ratio (SR), strain in slip 
bands ( EinSB ), or hot distance ( dH ). Once each NN is trained, we apply it to the test por-
tion of the dataset kept unseen by the model, to evaluate its accuracy in predicting the 
localization-based property based on the characteristics of the microstructure. As listed 
in Table 2, each NN model is optimized in performance with a unique hyper-parameter 
configuration. We use the same approach for training, evaluation, and testing all models.

Figure 9 shows how NN model predictions compare with the true values calculated via 
SB-FFT micromechanical simulations for the test data. Overall, all three models exhibit 
acceptable performance, with an R2 score of at least 0.95 and MSE of 0.033, at high-
est. Not only does such a high accuracy rate qualify these models as reliable tools for 
predicting localization-based material properties given the characteristics of a micro-
structure, but it provides the opportunity to rapidly enrich our dataset by generating 
additional pairs of features and labels, typically required for most optimization tech-
niques. This advantage is more acknowledged when comparing the time it takes to run a 
micromechanical simulation on a 3D microstructure with a size of 100 × 100 × 100 vox-
els ( ∼ 36 hours on a machine with 2.6 GHz 6-Core Intel Core i7 processor, 16GB RAM, 
and MacOS v.10.15 operating system) with the time it takes for a NN model to do the 
same task in seconds.

Having separate models trained and successfully tested for each property, we then use 
these surrogate models to generate a large dataset of microstructural features and their 
corresponding material properties. The enriched dataset comprises approximately 1.5M 
sample microstructures, compared to our initial limited dataset of 360 microstructures 
generated with DREAM3D and SB-FFT simulations. The available range for each micro-
structural feature is extended in the enriched dataset, except for the texture for which we 
still use the six textures presented in Fig. 4. Particularly, the average grain size ( ESDave ) 
can take any value between 5 and 100 voxels, with an increment of 0.5. The range for 
grain aspect ratio (AR) extends to any integers between 1 and 30, and standard deviation 
of the grain size log-normal distribution can vary in increments of 0.02. We therefore 

Table 2  Hyper-parameters of the neural network optimized for predicting each localization-based 
property. Listed are sets of possible values for each as well as the optimal values determined via 
Bayesian optimization using SigOpt

Optimal values

Hyper-parameter Possible values SR EinSB dH

Number of layers [2, 3, 4, 5, 6] 5 2 6

Learning rate [1, 5, 10, 50, 100] ∗ 10−4 5 ∗ 10−3 5 ∗ 10−3 10−3

Number of epochs [64, 128, 256, 512, 1024, 2048] 2048 2048 256

Batch size [8, 16, 32, 64] 64 16 32

Size of layer 1 [8, 16, 32, 64] 8 16 64

Size of layer 2 [16, 32, 64, 128, 256] 128 256 256

Size of layer 3 [16, 32, 64, 128, 256] 128 - 128

Size of layer 4 [16, 32, 64, 128, 256] 128 - 256

Size of layer 5 [16, 32, 64, 128] 16 - 32

Size of layer 6 [8, 16, 32, 64] - - 16
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create a fine grid of available values for our features, providing an applicable dataset for 
conducting a simple grid search for optimal material properties. An optimization algo-
rithm may provide a more comprehensive search, but the grid search optimization used 
here is an easy and effective method that nearly continuously covers the space of input 
features considered.

For each localization-based property, box and whisker plots in Fig. 10 present the dis-
tribution of the 360 datapoints from our initial dataset. The optimal values obtained 
from the grid search are also indicated by yellow stars. To obtain each of these three val-
ues, we perform a micromechanical simulation on a 3D polycrystal we created using the 
optimal combination of microstructural features suggested by the grid search. This addi-
tional step verifies whether our data-driven optimization scheme produces a truthfully 
optimal localization response in Ti-6Al-4V. As shown in Fig. 10a, the optimal solution 
manifests a superior response, i.e., lower degree of localization. However, given that our 
initial dataset already contains samples with very low slip ratios and that the SR is lower-
bound to 1.0, the gain from the optimal microstructure is not drastic. For the fraction of 
total strain accommodated by slip bands shown in Fig. 10b, the gain from the optimal 
microstructure is more pronounced, but still not significant. It should be noted, how-
ever, that a perfectly homogeneous distribution of deformation does not yield EinSB = 0 , 
as the slip band domains naturally occupy a few percent of the total microstructure. The 
most significant improvement in localization response is offered by the optimal solution 
that maximizes the hot distance. Figure 10c demonstrates the remarkable increase in the 
adjusted distance between intense slip bands in the polycrystal, achieved by the optimi-
zation scheme developed here.

Interestingly, we obtain a uniquely different optimal microstructure when considering 
each material property. That is to say, the microstructure configuration that maximizes 
the hot distance does not necessarily minimize the strain in slip bands. The polycrystal 
that minimizes the slip ratio (SR) has medium-sized, highly elongated grains with very 
small deviation in their size, and their orientation sampled from texture A. On the other 

Fig. 10  Distribution of three localization-based material properties for 360 datapoints from our initial dataset, 
as well as three datapoints (indicated by yellow stars) obtained from micromechanical simulations on optimal 
solutions predicted by the data-driven optimization scheme. The set of microstructural features including 
texture, grain aspect ratio (AR), average grain size ( ESDave ), and standard deviation ( σ ) that optimize SR, EinSB , 
and dH are [A, 30, 21, 0.001], [F, 28, 52.5, 0.86], and [C, 30, 5, 0.02], respectively
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hand, a polycrystal with texture F that comprises large grains that are highly dispersed 
in their size and elongated in their shape would minimize the fraction of the total strain 
localized within slip bands ( EinSB ). Finally, the microstructure that maximizes the hot 
distance ( dH ) is sampled from texture C, has small, yet again highly elongated, grains 
with small deviation in their size. In the next section, we further discuss these results.

Discussion
To represent the microstructure and create labels in our framework, we used the com-
bination of a graph network and a simple neural network model. The graph network was 
used to account for grain neighborhood and connectivity throughout the polycrystal. 
Using this approach, we presented each microstructure with a total of four key features. 
Therefore, the input dimensionality was significantly reduced compared to voxel-based 
machine learning models such as convolutional neural networks (CNN) (Herriott and 
Spear 2020; Rao and Liu 2020; Li et  al. 2019; Cecen et  al. 2018; Yang et  al. 2018) and 
graph neural network (GNN) models (Dai et al. 2021; Shu et al. 2022; Pagan et al. 2022; 
Hestroffer et  al. 2023; Vlassis et  al. 2020), leading to improved efficiency in terms of 
computation and memory requirements. While extracting the value of hot distance ( dH ) 
in our approach is accomplished by applying a graph network to the polycrystal, the time 
required for training our NN models is significantly reduced compared to CNN and 
GNN models, for which the training time exponentially increases with the number of 
voxels and grains in the microstructure. Furthermore, the meticulously architectured, 
fully connected NN model used in this work successfully captures the intertwined effects 
of microstructural features on slip localization, an advantage that simpler methods such 
as non-linear regression with polynomials and splines fail to provide.

Another advantage of the model developed here is the interpretability of the features 
and labels, rendering our results readily applicable, from a manufacturing perspective. 
Although voxel-based CNNs retain the microstructural features for each voxel within 
the polycrystal, they fail to account for grain neighborhood, a critical aspect for deter-
mining macroscopic properties of polycrystalline materials (Herriott and Spear 2020; 
Khorrami et al. 2023; Cang et al. 2018). Furthermore, since the solution would include 
features, such as orientation, optimized for each voxel, an optimal microstructure one 
would get from a CNN is not deemed readily manufacturable. Recently, application of 
GNNs for predicting mechanical properties of polycrystalline materials have shown 
promising results in circumventing the first issue (Dai et al. 2021; Shu et al. 2022; Pagan 
et al. 2022; Hestroffer et al. 2023). Nevertheless, we anticipate that the interpretability 
of optimal solutions would remain challenging. With the current manufacturing capaci-
ties, creating a set of grains with orientations, morphology, and connectivity exactly as 
prescribed by the GNN is unfeasible. The optimal solution provided by our approach, 
on the other hand, is easy to interpret and feasible to manufacture as many experimen-
tal works have successfully developed techniques to control grain size, morphology, and 
texture in titanium alloys (Stubbington and Bowen 1974; Ng et al. 2022; Ao et al. 2020; 
Zhu et al. 1997; Murty and Charit 2006).

A disadvantage of feedforward NN models compared to GNNs is their underper-
formance when extrapolating in nonlinear tasks. However, studies show that the extrap-
olation capacity of MLPs enhances when the training distribution is diverse (Xu et al. 
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2020). We have verified this by conducting micromechanical simulations on polycrys-
tals that were sampled from optimal solutions predicted by our NN models. While the 
improvement in some cases is only marginally significant, the solution microstructures 
produce localization responses that exceed the limits established from simulation of the 
initial dataset. This indicates that the trained NN models performed reasonably well 
when applied to the generated dataset.

We showed that the optimal microstructure designed for each localization-based 
property is unique with a set of microstructural features that does not optimize other 
properties. Surprisingly, one solution recommended texture F (uniformly random or 
no texture) with large grains to minimize the total strain localized within slip bands, 
while the solution that maximized the hot distance featured a rolling texture with small 
grains. Since the latter includes both the intensity of slip bands and the distance between 
intense slip bands within the microstructure, we may consider the optimal solution 
for hot distance more preferable. Ti-6Al-4V microstructures with smaller grains have 
also been experimentally associated with superior fatigue properties (Stubbington and 
Bowen 1974; Peters and Lütjering 1983; Kimura et al. 1980), arguably due to the fact that 
slip length and intensity is smaller in fine-grained materials.

Remarkably, a feature that was common in all optimal microstructures is the elongated 
shape of grains. This result suggests that higher grain aspect ratios lead to an improve-
ment in localization-based properties, or equivalently, a more delocalized strain dis-
tribution in the material. A plausible argument here is that the smaller dimension in 
elongated grains can drastically reduce the likelihood of slip band formation and locali-
zation, if the orientation of the grain favors a slip band that spans along that direction. 
Therefore, not only will no slip band form in that grain which contributes to strain delo-
calization, but the grain will undergo either homogeneous or no deformation at all, 
breaking the potential chain of long-range localization in the microstructure.

As a final remark, given the close relationship between microscopic localization 
response and macroscopic material properties, and thanks to the current advances in 
novel manufacturing techniques, it is envisioned that the findings of this work provide 
valuable target features for designing optimal Ti-6Al-4V polycrystals to overcome the 
strength-toughness trade-off. Incorporating more possible textures and microstructural 
features, allowing slip bands to develop on multiple slip systems, and inclusion of the β 
phase in the microstructure can provide further insights in future works.

Conclusions
The development, long-range transmission, and connectivity of slip bands in polycrystal-
line materials including Ti-6Al-4V titanium alloy are experimentally evidenced to con-
tribute to crack initiation and propagation (Echlin et al. 2016; Le Biavant et al. 2002). In 
this paper, we combined explicit slip band micromechanical simulations on 3D polycrys-
tals with graph networks and neural network models to design a Ti-6Al-4V microstruc-
ture that features strain delocalization to some extent. This unique approach enabled us 
to circumvent the time-intensive search for optimal microstructures through mechani-
cal simulations. Additionally, it accounted for the grain neighborhood and connectivity 
within the polycrystal and provided a level of interpretability that were otherwise missed 
if neural networks and graph neural networks were used alone. We first generated a 
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dataset of 3D polycrystals with different microstructural characteristics and ran crystal 
plasticity simulations to calculate the mechanical response of each polycrystal, from a 
localization standpoint. Motivated by the simulation results, we then formulated a set 
of localization-based properties to optimize, all in line with strain delocalization. These 
properties included the ratio of slip accumulated in slip bands to that in parent matrices, 
the fraction of total applied strain accommodated by slip bands, and the spatial connec-
tivity of slip bands throughout the polycrystal. Separate neural network (NN) models 
were designed and tuned to predict these properties for a given set of microstructural 
features, such as texture, grain size and shape. Once the models are shown to be highly 
accurate, we employed them to generate additional data to enrich our initial, relatively 
limited dataset of 3D microstructures. Finally, we performed a grid search optimiza-
tion on the new dataset to find optimal microstructures, each improving one property. 
The surrogate neural network models exhibited a promising predictive performance 
for localization-based properties. The optimization results identified that each material 
property is optimized by a unique microstructure solution. Remarkably, elongated grain 
shape emerged as a recurring feature among all optimal microstructures. These findings 
can help design polycrystalline Ti alloys that exhibit more homogeneous deformation 
and possess superior mechanical properties, such as strength and toughness.
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