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Abstract

The current interest in compositionally complex alloys including so called high entropy
alloys has caused renewed interest in the general problem of solute hardening. It has
been suggested that this problem can be addressed by treating the alloy as an effective
medium containing a random distribution of dilatation and compression centers
representing the volumetric misfit of atoms of different species. The mean square
stresses arising from such a random distribution can be calculated analytically, their
spatial correlations are strongly anisotropic and exhibit long-range tails with third-order
power law decay (Geslin and Rodney 2021; Geslin et al. 2021). Here we discuss
implications of the anisotropic and long-range nature of the correlation functions for
the pinning of dislocations of arbitrary orientation. While edge dislocations are found
to follow the standard pinning paradigm, for dislocations of near screw orientation we
demonstrate the co-existence of two types of pinning energy minima.
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Introduction
The theory of dislocations interacting with atomic-scale obstacles, traditionally formu-
lated in the context of solution hardening, has seen a renaissance in recent years which
has been driven by the general interest in compositionally complex alloy systems includ-
ing so-called high-entropy alloys. In such alloys, multiple atomic species are present in
comparable concentrations and entropic effects may stabilize homogeneous phases at ele-
vated temperatures, whereas kinetic effects (slow diffusion due to multiple barriers and
traps) may stabilize those phases against unmixing at reduced temperatures.
From a theoretical viewpoint, statistical theories of dislocation pinning by atomic-scale

obstacles have, starting from the seminal work of Labusch (1970, 1972), attracted the
interest of statistical physicists, and concepts developed for the pinning of elastic mani-
folds by random fields (e.g. (Chauve et al. 2000)) and their depinning by external forces
were applied to the athermal motion of dislocations (e.g. (Zapperi and Zaiser 2001; Bakó
et al. 2008)) and to dislocation motion at finite temperatures (Ioffe and Vinokur 1987;
Zaiser 2002). The corresponding depinning transition has been studied using by dis-
crete dislocation dynamics (Zapperi and Zaiser 2001; Bakó et al. 2008) and recently also
by atomistic simulation (Péterffy et al. 2020). In recent years, these concepts have been
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extended and adopted to compositionally complex and high entropy alloys by a number of
authors (e.g. (Leyson et al. 2010; Toda-Caraballo and Rivera-Díaz-del-Castillo 2015; Wu
et al. 2016; Varvenne et al. 2016; Varvenne et al. 2017; LaRosa et al. 2019)). In particular,
the group of W. Curtin has demonstrated that pinning of dislocations in compositionally
complex alloys and the associated flow stress increase can to a large extent be explained in
terms of the significant local stress fluctuations introduced by the superposition of misfit
strains associated with atomic species of significantly different atomic radius. Recently,
(Geslin and Rodney 2021; Geslin et al. 2021) evaluated the magnitude and spatial correla-
tions of such random stress/strain fields. Here we use their results to study the effects of
dislocation orientation on dislocation pinning by volumetric misfit fluctuations.

Scaling theory of elastic lines in static random fields
We envisage the dislocation as an elastic line of line tension 0 b2 where is the
shear modulus, b the length of the Burgers vector, and the numerical parameter 0 which
is of the order of 1 may depend logarithmically on geometrical parameters characterizing
the line shape. The dislocation is assumed macroscopically straight while local fluctua-
tions of the line shape are described by a function y x where the x axis is oriented along
the average line direction and the y axis in perpendicular direction within the glide plane.
Note that we assume y x to be single valued, which excludes the presence of overhangs.
Let atomic disorder create a spatially fluctuating but temporally fixed resolved shear

stress field x, y (internal shear stress) that acts on the dislocation, which is in addi-
tion subject to a spatially constant resolved shear stress ext (external shear stress). The
evolution of the dislocation line shape is then given by the quenched Edwards-Wilkinson
equation (Edwards and Wilkinson 1982)

B
dy
dt

2y
x2

b[ x, y ext] (1)

The random internal shear stress x, y has the correlation function

x, y x , y 2 x x
a

,
y y
a

. (2)

For a random alloy, the magnitude 2 can be related to the average of the squared
atomic misfit (see below) (Geslin and Rodney 2021). Analytical expressions that allow to
compute the correlation function have been given by (Geslin et al. 2021) where the
length scale parameter a was, by comparison with MD results, determined to be of the
order of 1Å. For later use we introduce the notations y : x 0, y for the cor-
relation function in the line-perpendicular and x : x, y 0 for the correlation
function in the line-parallel direction.
We now evaluate the work per unit length done by the internal stress as an infinitesimal

dislocation segment at x, 0 displaces from y 0 to y w. This is given by b w
0 x, y dy.

We express the average value of this integral in terms of the conditional average of
x, y given the stress at x, 0 , i,e, x, y x,0 x, 0 y a : W x,w x,0

b x, 0 w
0 y a dy.

Next we consider a segment of finite length L which is displaced by a distance w in the
direction of the (mean) internal stress acting on that segment, and we evaluate the mean
square work:
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W 2
L,w

1
L

L

0
E x,w x,0 dx

2
2

Lb2
w

0
y a dy

2
(3)

This expression contains the average of the square internal stress over the length L. The
result is given by (see Appendix):

2
L

2 1
L

L 2

L 2

x x
a

dx 2 r L
L

(4)

where x a dx 1a and r L 2 L 2 x a dx. For sufficiently localized
correlation functions one can, for L , neglect the residual r L . One then recovers the
result for -correlated fluctuations where x x . We make this approximation in
the following unless otherwise stated.
Under the fluctuating internal stress, segments move to reduce their energy. The char-

acteristic energy reduction for a segment of length L moving over the distance w can
be estimated as ERF L,w W 2 L,w. To maintain connectivity between adjacent seg-
ments (which in general displace in different directions), the dislocation has to elongate.
We estimate the corresponding energy cost by considering, on each side of the moving
segment, two connecting segments of length L 2 (for graphical illustration, see Figures 2
in (Leyson et al. 2010; Varvenne et al. 2016)). The line tension energy is then estimated as
the energy cost associated with the length increase of these segments, divided by L. For
L w one obtains

ELT L,w
2 w2

L2
(5)

The total energy change per unit line length E L,w for segments of length L that
displace independently to minimize their energy is then estimated as

E L,w ELT L,w ERF L,w
2Tw2

L2
b 2

L

1 2 w

0
y a dy (6)

The pinning energy per unit length derives by minimizing this expression with respect to
L and w. Setting w E L,w L E L,w 0 gives

0 4
wp
L2p

b 2
Lp

wp a

0 4
w2
p

L3p
b
2

2
L3p

wp

0
y a dy (7)

Both equations can be combined to eliminate the dislocation related parameters , b, L .
It follows that the optimal displacement depends only on properties of the correlation
function and obeys the equation:

2wp wp a
wp

0
x a dx (8)

We may now use these results to obtain from Eq. (7) the pinning length Lp. With the
notations 1a,wp 2a we get

Lp
16 2

2

1
2 wp a

1 3

2 b

2 3

a1 3 (9)
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Setting finally 0 b2 we find the scaling relation

Lp
16 2

2
2
0

1
2 wp a

1 3

2

2 3

b2 3a1 3 CL 2

2 3

b2 3a1 3 (10)

Inserting (10) into (6) gives the pinning energy which results as:

Ep 3
2
1

2
2

4 wp a
4 0

1 3 2 4 3

1 3 a4 3b2 3 CE
2 4 3

1 3 a4 3b2 3 (11)

Finally, the critical shear stress is estimated by equating the pinning energy to the
work done by the external shear stress in moving the dislocation over the pinning
displacement wp:

ext,c
Ep
bwp

C
2 4 3

1 3
a
b

1 3
. (12)

Application to dislocation pinning in random alloys
Statistical properties of local shear stresses: a compilation of results

For an alloy constituting a random distribution of different atomic species which depend-
ing on atomic radius act as dilatation or compression centers in the effective medium of
the alloy, statistical properties of the ensuing shear stress field were calculated by Geslin
et. al. (Geslin and Rodney 2021; Geslin et al. 2021). In this paragraph we summarize their
results. The mean square internal shear stress in an arbitrary plane is given by

2 Va 2

30 3 2a3
(13)

where Va is the atomic volume, 2 is the mean square volumetric strain (dilatation or
compression) introduced by an individual atom into the effective medium constituted by
the random alloy. The characteristic length a arises in the treatment of Geslin et. al. as a
regularization length that characterizes the distribution of the volumetric strain around
the atom position. By comparison of theoretical results with stresses determined from
molecular statics simulations, this parameter was determined by Geslin et. al. for different
alloys and found to be close to a 1Å.
The correlation functions in the shear direction (’longitudinal’ correlation function L)

and in perpendicular direction in the shear plane (’transversal’ correlation function T)
are derived by Geslin et. al. as

L u
30
u3

1
12
u2

erf
u
2

1
u

12 u2 exp
u2

4
,

T u
15
u3

1
6
u2

erf
u
2

6
u
exp

u2

4
, (14)

where u d a and d denotes the distance from the origin in the respective direction. The
correlation functions are plotted in Fig. 1 which shows the anisotropic nature of the cor-
relations. The corresponding correlation integrals, which are needed to evaluate pinning
parameters, are given by
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Fig. 1 (a) Longitudinal and transverse correlation functions of the fluctuating shear stress in an effective
medium with random volumetric misfit, blue: transverse correlations, red: logitudinal correlations, (b)
determination of the optimal pinning displacement for an edge dislocation from the longitudinal correlation
function

U

0
L u du

15
U4 U2 6 erf

U
2

6U exp
U2

4
,

U

0
T u du

15
8U4 U4 4U2 12 erf

U
2

2U3 12U exp
U2

4
,

(15)

The correlation function in an arbitrary direction that makes an angle with the shearing
direction is found to be

,u L u cos2 T u sin2 (16)

and the corresponding correlation integrals derive by analogous superposition of the
integrals in Eq. (15).

Pinning of an edge dislocation

We consider a perfect edge dislocation where the shear direction (the direction of the
Burgers vector) is perpendicular to the dislocation line. We can thus identify the x coor-
dinate of the dislocation coordinate system with the transverse coordinate, T u

x a and the y coordinate with the longitudinal coordinate, L y a .
The correlation length is evaluated as the integral of the parallel correlation function

over the x axis. From Eq. (15) it follows that

x a dx
15

4
a 6.6a. (17)

Hence, the correlation length parameter 1 6.6. In a simplified scaling analysis we
neglect the residual that remains when the integral is restricted to the interval x L 2.
For L this residual can be evaluated from the asymptotic behavior of the correlation
function as

r 2
L 2

x a dx 30
L 2

a
x

3
dx 60 a

a
L

2
. (18)
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which provides, once the pinning length is determined, a simple check of the accuracy of
the approximation r
We now use Eq. (8) to determine the optimum pinning displacement wp from the

longitudinal correlation function as shown in Fig. 1, (b). We find that wp 1.59a,
hence 2 1.59, and wp a 0.38.
As a numerical example we consider a hypothetical Al0.5Mg0.5 fcc random solid solu-

tion for which simulations reported in Ref. (Geslin et al. 2021) give the values 20.7
GPa, a 1Å, and 2 0.6 GPa2. For the Burgers vector length we use a value of 3.02Å,
which is the arithmetic mean of the Burgers vector length in Al and the a lattice spacing
in Mg. For the line tension associated with the bow out of an edge dislocation, we refer to
Ref. (Zhai and Zaiser 2019) who determine, from thermal vibrations of an edge dislocation
line, an effective line tension of 0.35 b2, hence e

0 0.35. For a screw dislocation
we consider a pre-factor s

0 3 e
0. While isotropic elasticity theory predicts higher val-

ues, both experimental investigations (Mughrabi 2001) and recent atomistic simulations
(Szajewski et al. 2015) suggest for fcc crystals a ratio s

0
e
0 2 2.5, so using a ratio

of 3 may serve as an acceptable compromise. More accurate and material specific values
can, if needed, be deduced from molecular dynamics simulations of the thermal rough-
ening of dislocation lines, using the method described in Ref. (Zhai and Zaiser 2019). All
parameters we used in our numerical examples are compiled in Table 1.
With these parameters we obtain for a pure edge dislocation Lp 32.9 Å 6.18

Å. Equation (11) gives for the pinning energy per unit length Ep 1, 83 10 11J/m
0.01 b2 , and the critical resolved shear stress derives from Eq. (12) as ext,c 390MPa.
With the pinning length given above we can estimate the residual r Lp which with

Eq. (17) follows as r Lp 0.106Lp. This demonstrates that the approximation made in
neglecting this residual is acceptable. We note that, in scaling analysis of pinning prob-
lems, this approximation is often postulated a priori by approximating the correlation
function in the line parallel direction as x x . The fact that we obtain, up
to minor corrections, the same result as for such uncorrelated disorder demonstrates
that an asymptotic third-order decay of the correlator, contrary to the conjecture of Ref.
(Geslin et al. 2021), not necessarily violates the assumption of short-range correlations
used in standard scaling arguments. However, as we shall see, the case of a perfect screw
dislocation illustrates how standard scaling arguments can go wrong.

Pinning of a screw dislocation

If the dislocation orientation has screw orientation, the above treatment becomes spu-
rious because the correlation function for a screw dislocation integrates to zero, the
corresponding pinning length would therefore diverge and accordingly the pinning energy
and pinning stress would be zero. For a screw dislocation we therefore investigate the
energy gain E w, L using the full expressions for the integral over that arises when
averaging the fluctuating internal stress over a segment of length L:

E L,w
2 0 b2w2

L2
b 2 1

L

L 2

L 2
x a dx

1 2 w

0
y a dy (19)

The corresponding energy landscape is illustrated in Fig. 2, top left. There is an energy
minimum located at L 6a, in good agreement with the range over which the cor-
relation function L, i.e. the line parallel correlation function for screw dislocations,
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Fig. 2 Energy landscapes for dislocations of various orientation, energy reduction of segments of length L
displacing over the distance w according to Eq. (19), angles are given in the figures

is positive. However, the corresponding optimal displacement w 0.08a is tiny and
accordingly the maximum energy gain is small, amounting to Ep,s 0.054 10 11

J/m 2.85 10 4 b2. Nevertheless, because of the smallness of wp Eq. (12) predicts a
significant pinning stress of about 190 MPa, half the value for the edge dislocation.

Pinning of a general dislocation

For a dislocation of general orientation where is the angle between the line
direction and the Burgers vector, it follows from Eq. (15) that the line-parallel and
line-perpendicular correlation functions are

u L u cos2 T u sin2 ,

u L u sin2 T u cos2 . (20)

Moreover, we assume that the line tension varies with the angle according to
0 b2 where, for simplicity, we consider a simple sinusoidal variation:

0
s
0 cos

2 e
0 sin

2 (21)

This allows us to study the angle dependence of the pinning parameters.

Edge-like pinning

We first use a simplified treatment which, as in case of an edge dislocation, neglects the
correlation residual r L . We thus base our analysis upon Eqs. (6–12). Since the longitudi-
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nal correlation function L integrates to zero, the correlation length parameter is, upon
neglecting the residual integral r L , given by

1
e
1 sin2 . (22)

Finally, we numerically establish the orientation dependence of the optimum pinning
displacement wp and the corresponding function value wp using Eq. (8).
All dependent parameters are compiled in Fig. 3, left.
From these parameters we can compute the angle dependent parametersCL,CE andC .

The respective physical variables are obtained from these by multiplication with material
and fluctuation parametes according to Eqs. (10)-(12). The parameter CL increases as
we move away from the edge orientation, whereas the correlation length parameter 1
decreases. Accordingly, our analysis, which is built upon the smallness of L and a L,
becomesmore accurate.We denote this behavior as edge-like pinning. The corresponding
energy landscape is illustrated in Fig. 2, bottom right, for the case of a 60 deg dislocation.
In the screw dislocation limit our analysis however implies a diverging pinning length

and vanishing pinning stress and energy, at variance with the findings of section 3.3.
In fact, the energy minimum seen in Fig. 2, top left, for the screw dislocation actually
represents a different class of ’screw-like’ pinning behavior which we now investigate.

Screw-like pinning

We base our analysis upon Eq. (19) which we simplify using the observation that, in case
of screw dislocation pinning, the pinning displacement wp which optimizes the energy
gain is very small. Accordingly, we can approximate w

0 x a dx w. The extremum
condition w E L,w L E L,w 0 then gives

0 4
wp
L2p

b 2

Lp 2
Lp 2 x a dx

Lp

1 2

0 4
w2
p

L3p
b

2 wp

2Lp
Lp Lp 2a

Lp 2
Lp 2 x a dx

1 2

Lp 2
Lp 2 x a dx

Lp

1 2

(23)

Fig. 3 Left: Dependence of scaling parameters on dislocation orientation angle ; right: Corresponding
parameters CL , CE and C which govern the angle dependence of the pinning length, pinning energy and
pinning stress, respectively
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Both equations can again be combined to eliminate the dislocation related parameters
, b, L , which produces an equation for the pinning length:

Lp
2a

Lp 2a
Lp 2

0
x a dx. (24)

The situation is illustrated in Fig. 4 for the cases of a pure screw ( 0) and a 15 deg
dislocation. In this range, the equation has two solutions, corresponding to a minimum
and a saddle point of the energy surface. The two solutions merge at an angle slightly
above 18 deg, so there are no screw-like solutions for larger angles. At the same
time, the saddle point moves to L as 0 and thus merges with the edge-like
minimum. The resulting energy landscapes are characterized by a ridge with two peaks
(maxima of the energy reduction as the dislocation adjusts to the pinning landscape) and
a saddle point. Such energy landscapes are illustrated in Fig. 2, top right and bottom left,
for angles 5 deg and 15 deg.

Numerical example

We now apply the previously obtained relations to the case of the Mg0,5Al0.5 alloy studied
by Geslin et. al. (2021).We calculate pinning length, pinning energy and pinning stress for
orientations between 0 and 90 deg using the relations for edge-like pinning (large pinning
length, significant pinning displacement), and for orientations between 0 and 18 degrees,
where the screw-like energy minimum exists, we compute the same parameters also for
screw-like pinning. For the pinning length, we also show the unstable saddle point.
Parameters are found in Table 1, and results are compiled in Fig. 5. In this figure, the

full circles are results of an unbiased saddle point search in the energy landscape defined
by Eq. (19), whereas the dashed lines represent ‘edge-like’ and ‘screw-like’ approximations
based on Eqs. (8) and (24), respectively. In all cases, the agreement of these semi-analytical
solutions with the numerical solution based on the full energy functional is excellent. The
largest deviations occur near the edge orientation but remain below 10%.

Fig. 4 Determination of the pinning length for screw-like pinning from Eq. (24) for a pure screw (left) and a
15 deg dislocation (right). Note that Eq. (24) is not valid for the edge-like branch of pinning energy maxima
which exhibits much higher pinning displacements
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Table 1 Parameters used in numerical calculations

Parameter Unit Numerical value

shear modulus GPa 20.7

Burgers vector length b Å 3.05

solute core parameter a Å 1.0

mean square shear stress 2 GPa2 0.6

line tension parameter e
0 Te b2 – 0.35

line tension parameter s
0 Ts b2 – 1.05

For near screw orientations the results show a co-existence of two pinning branches
which show an interesting dichotomy, as the edge-like branch (except very close to the
pure screw orientation) is characterized by an energy minimum that is deeper but much
less steep, leading to a reduced pinning stress. The screw like branch, on the other hand,
shows small pinning energies but, because the small pinning displacements lead to a steep
slope of the energy landscape, appreciable pinning stresses.Which of these minima domi-
nates the plastic behavior is difficult to decide without consideration of thermal activation
and history effects.

Discussion and conclusions
Our calculations demonstrate that, in addition to well known line tension effects which
lead to reduced pinning of screw relative to edge dislocations, the anisotropy of shear

Fig. 5 Pinning length (left, top), pinning stress (left, bottom) and pinning energy (right top and bottom) as
functions of dislocation orientation angle, calculated for an equiatomic MgAl solid solution with parameters
given in Table 1. Full circles indicate minima or saddle points determined from the full energy functional
using a saddle point search, dashed lines correspond to maxima and minima computed from approximate
semi-analytic solutions for the edge-like and screw-like limits. For the edge-like branch, one solves Eq. (8)
with the functions given in Eqs. (14)-(16) and then inserts the result into (9)-(12). For the screw-like branch
one proceeds in an analogous manner with Eqs. (19), (23) and (24). Both right figures contain the same
information (energy vs angle) represented using different axis scaling, the bottom figure showing in more
detail the angle dependency of energy minima and saddle point near the screw orientation
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stresses created by an assembly of compression/dilatation centers has a major influence
on the anisotropic pinning of dislocations. Edge dislocations and near edge dislocations
follow the standard pinning paradigm despite a third law power decay of the stress cor-
relator. Pinning of screw and near screw dislocations, on the other hand, is characterized
by a different type of energy minimum with much reduced pinning length and pinning
displacement. Pinning stresses of near-screw dislocations are slightly lower than those of
edge dislocations, but more importantly, the depth of the energy minimum for screw-like
pinning is much lower than for edge-like pinning. As a consequence, at elevated tem-
perature the motion of edge dislocations, being controlled by deep energy minima, is
expected to be much more difficult than the motion of screw dislocations. This may serve
as a generic explanation for recently reported observations in bcc High Entropy alloys
(Kubilay et al. 2021).
It is interesting to discuss the relations between the present work and earlier work of

Leyson et. al. (2010) and Varvenne et. al. (2016). In these works, the physical assumptions
regarding the nature of dislocation-solute interactions, which are assumed to be domi-
nated by the elastic interaction, are identical with those used here. Also, we have assumed
a similar bulge geometry such as to facilitate comparison. However, there are significant
differences regarding the method of summation of the random elastic fields. Here we use
a treatment that is based on the work done by the solute-created shear stress field, which
allows us to carry out the required stochastic summations over the shear stresses acting
on the dislocation (i.e., the Peach-Koehler forces). In this manner we can use the correla-
tor of Geslin et. al. and the associated convergent integrals, Eqs. (14,15). The results can
with good accuracy be cast into the form of semi-analytical expressions that directly relate
the pinning stress to material and solute parameters. Leyson et. al. (2010) and Varvenne
et. al. (2016), on the other hand, carry out a direct summation of the interaction energies
which is performed with some numerical approximations. A detailed assessment of the
validity of this approach is postponed to future work.
While we have established generic relationships that allow to separate the effects

of line tension and of statistical parameters of the fluctuating stress field, in present
form these relationships are applicable to perfect dislocations only. In High Entropy
alloys, where stacking fault energies may be low, wide core splitting of dislocations
introduces an additional degree of freedom which needs to be taken into account in pin-
ning theories. Since the partials of a split dislocation have mixed character even when
we are dealing with pure screw dislocations, we expect an even more complex energy
landscape. At the same time, the peculiarities of screw-like pinning discussed in the
present work are likely to be irrelevant for split screw dislocations, since the dislocation-
solute interactions are in this case controlled by the edge components of the partials
even for screw dislocations. For details the reader is referred to a companion paper
(Vaid et al. 2021).

Appendix A: Mean shear stress fluctuation acting on a straight dislocation
segment
The mean square fluctuations of the shear stress acting on a straight dislocation segment
of length L located between the points L 2, 0 and L 2, 0 depend on the transverse
correlation function. They derive as
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2
L

1
L

L 2

L 2
x, 0 dx

2 1
L2

L 2

L 2
x, 0 x , 0 dxdx

2

L2
L 2

L 2

x x
a

dxdx (25)

To evaluate the integral we introduce the notation x x x :

2
L

2 1
L2

L 2

L 2

L 2 x

L 2 x
x a dxdx (26)

The inner integral can be re-written as
L 2 x

L 2 x
x dx

1
2

L 2 x

L 2 x
x dx

L 2 x

L 2 x
x dx

L 2

L 2
x dx r , r 2

L 2
x dx. (27)

where we have exploited the symmetry of the correlation function.

Appendix B: Comparison with experimental flow stress data
Our theory allows to evaluate the orientation-dependent stress required to move dislo-
cations without assistance of thermal activation. With an additional assumption how the
C factors of dislocations of different orientation add up, this allows to estimate the low-
temperature limit of the critical resolved shear stress (CRSS) 0. Here we make the simple
assumption that the CRSS can be estimated from Eq. (12) if we replace C by its angular
average C 0.94. As experimental reference we use cryogenic deformation experi-
ments by Podkuyko and Pustovalov (Podkuyko and Pustovalov 1978) which cover the Mg
concentration range from 0 to 9 at%. To obtain 0 T 0K) we extrapolate the tempera-
ture dependent CRSS data of (Podkuyko and Pustovalov 1978) downwards to 0K. Results
are shown in Fig. 6 (open circles) together with the prediction of Eq. (12) (full line). In the
calculation, the parameters of Table 1 for Al0.5Mg0.5 were used, however, the mean square
stress was extrapolated to lowerMg concentrations using the relation 2 cMg 1 cMg
which follows from Vegard’s law (see e.g. the discussion in (Geslin and Rodney 2021)).
The results are in decent agreement with the CRSS data.

Fig. 6 Extrapolated zero-temperature CRSS data obtained from measurements of Podkuyko and Pustovalov
(Podkuyko and Pustovalov 1978) on AlMgx single crystals, and prediction derived from Eq. (12)
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