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Abstract

Direct Molecular Dynamics (MD) simulations are being increasingly employed to model
dislocation-mediated crystal plasticity with atomic resolution. Thanks to the dislocation
extraction algorithm (DXA), dislocation lines can be now accurately detected and
positioned in space and their Burgers vector unambiguously identified in silico, while
the simulation is being performed. However, DXA extracts static snapshots of
dislocation configurations that by themselves present no information on dislocation
motion. Referred to as a sweep-tracing algorithm (STA), here we introduce a practical
computational method to observe dislocation motion and to accurately quantify its
important characteristics such as preferential slip planes (slip crystallography). STA
reconnects pairs of successive snapshots extracted by DXA and computes elementary
slip facets thus precisely tracing the motion of dislocation segments from one
snapshot to the next. As a testbed for our new method, we apply STA to the analysis of
dislocation motion in large-scale MD simulations of single crystal plasticity in BCC
metals. We observe that, when the crystal is subjected to uniaxial deformation along its
[001] axis, dislocation slip predominantly occurs on the {112} maximum resolved shear
stress plane under tension, while in compression slip is non-crystallographic (pencil)
resulting in asymmetric mechanical response. The marked contrast in the observed slip
crystallography is attributed to the twinning/anti-twinning asymmetry of shears in the
{112} planes relatively favoring dislocation motion in the twinning sense while
hindering dislocations from moving in the anti-twinning directions.
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Introduction
Understanding metal plasticity from the collective motion of dislocations has been one of
the main objectives for materials scientists ever since dislocations were first proposed as
themicroscopic agents of crystal plasticity. Largely owing to the relentless growth in com-
puting power, direct Molecular Dynamics (MD) simulations were recently demonstrated
on previously unattainable length and time scales that are statistically representative of
macroscopic single crystal plasticity and yet resolve its fundamental unit mechanisms in
all atomistic details (Zepeda-Ruiz et al. 2017, 2021).
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The recent surge of interest in large-scale MD simulations of dislocation-mediated
plasticity has been greatly facilitated by the dislocation extraction algorithm (DXA)
(Stukowski and Albe 2010; Stukowski 2014) that has become instrumental in analyzing
the MD data. Given a single atomic configuration (a snapshot) of a crystal, the DXA algo-
rithm detects, locates in space, and determines (indexes) precise Burgers vectors of all
dislocations present in the crystal volume. Having already become a classic of computa-
tional analysis, the DXA method runs efficiently in parallel and can be performed on the
fly during the MD simulation. The classic DXA algorithm provides static snapshots of the
dislocation microstructure that, by themselves, provide no quantitative information on
the dynamics of dislocation motion. To understand and quantify how dislocations move
in a crystal subjected to straining, additional post-processing is required.
In this paper, we introduce a simple and robust algorithm for extracting details of dis-

location motion (slip crystallography, dislocation velocities, dislocation flux, etc.) from a
sequence of dislocation network snapshots. Although our primary focus here is on dislo-
cation networks extracted by DXA fromMD simulations, our new method works equally
well on dislocation networks produced in mesoscopic Discrete Dislocation Dynam-
ics (DDD) simulations. Our sweep-tracing algorithm (STA) tracks dislocation motion
by reconnecting successive dislocation networks in a way that is independent of the
details of line discretization and agnostic to the network topology. The key idea of the
method is to circumvent the difficult problem of matching the topology of two succes-
sive dislocation networks by representing the same line networks as configurations of
the dislocation density (Nye’s) tensor field on a spatial grid. Using such a dual repre-
sentation – line and field – the task of tracing dislocations motion is transformed into
an optimization problem that seeks to minimize a distance between pairs of succes-
sive dislocation networks. During this process, STA reconstructs details of dislocation
motion in the form of slip facets reconnecting dislocation line segments in two successive
network snapshots, thereby allowing to extract quantitative information on dislocation
dynamics.
In “The sweep-tracing algorithm (STA)” section, we introduce the STA method and

discuss its algorithmic implementation. In “Results” section, STA is used first to ana-
lyze the motion of dislocations produced by expansion of a single dislocation loop and
then applied to large scale simulations of dislocation-mediated plasticity in body-centered
cubic (BCC) tantalum subjected to uniaxial tension and compression. The resulting STA
data is then discussed in “Discussion and conclusion” section where the notorious ten-
sion/compression asymmetry of the flow stress response in BCC metals is related to a
distinctly different crystallography of dislocation slip observed in silico under tension and
compression.

The sweep-tracing algorithm (STA)
In principle, human eye is efficient in grasping essential characteristics of dislocation
motion by reconnecting together positions and orientations of individual line segments
attained in successive network configurations. While instructive and entertaining, visual
analysis is often inefficient in collecting quantitative statistical data and, at times, decep-
tive in attempting to quantify how the dislocations move. Here we seek to develop a
quantitative analog of “visual tracking” in which two successive snapshots of a disloca-
tion network at times t and t + �t are reconnected in a non-arbitrary quantitative way.
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Although the task may present itself as trivial at a first glance, several practical difficulties
arise when trying to reconnect dislocation networks.
First, the two snapshots need to be sufficiently close apart in time for any reconnec-

tion to be possible and to remain unambiguous. Conversely, when two successive network
configuration are too far apart, essential details of dislocationmotion can be lostmaking it
impossible to unambiguously reconnect two configurations. Even though STA can recon-
nect any two network configurations, however distant, in the following we will implicitly
assume that �t is sufficiently small so that, from one frame to the next, dislocations move
over distances smaller than the mean dislocation spacing.
The second difficulty is that dislocation networks change their topology such as when

dislocations intersect and zip into junctions, or when the junctions break apart or when
line discretization is refined or coarsened from one time instance to the next. In DXA,
changes in network topology can be observed even on the time scale of a single simulation
time step, e.g. owing to incessant thermal vibrations of the atoms. This means that, when
considered as two graphs, successive networks extracted via DXA analysis are generally
nonisomorphic, thereby precluding the use of direct graph matching procedures.
It should still be possible to quantify dislocation motion by matching segments that

belong to the maximum common sub-graph even when two dislocation network graphs
are nonisomorphic. Provided �t is sufficiently small, uncommon remainders of two
graphs should be small and can be excluded from statistical analyses. However, numerical
algorithms for computing the maximum common sub-graph of two graphs are known to
be NP-complete in computational complexity (Garey and Johnson 1979) rendering such
calculations practically unfeasible for networks containing more than 104 physical nodes
(such network sizes are now routinely achieved in large-scale MD simulations of crystal
plasticity (Zepeda-Ruiz et al. 2017, 2021)).
To overcome the difficulties outlined above, the key idea of the STA method is to

first convert each dislocation line network into a continuous field accurately representing
the network’s geometry and Burgers vector charges, and then reconnect two disloca-
tion networks by matching their field representations. Among several known continuum
field representations, we use the Nye’s tensor (also known as dislocation density) field
(Nye 1953) to represent the dislocations networks. For our purposes here it is sufficient
to define the continuous dislocation fields on a regular grid. If desired, the grid can be
selected to have the same geometry as the underlying crystal lattice (body-centered cubic
in tantalum). Here for simplicity we define dislocation density fields on a simple cubic
grid.
Consider a dislocation networkN . The Nye’s tensor αN (x) at every field point x due to

the presence of dislocation lines that constitute dislocation networkN is

αN (x) =
∫
N
b(x′) ⊗ t(x′)δ(x − x′) dl(x′) (1)

where integration is performed along dislocation line segments of the network N . Here,
b is the Burgers vector, t is the unit tangent vector of the line, and δ(x) is the Dirac delta
function. As written above, the Nye’s tensor is non-zero only in field points lying on the
line segments of dislocation network N , however the Nye’s tensor content in any given
material volume can be computed as a line integral over the network segments inside the
same volume. Numerically, the singular Nye’s tensor field αN (

xd
)
of an arbitrary dis-
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location network can be approximated on a discrete spatial grid �d = {
xd

}
so that its

volume content on the grid points is preserved. Here we use an analytical partition of
unity method to smear out the singular Nye’s tensor of a line dislocation network over
a regular grid. As shown in (Bertin 2019), such network-to-field mapping is robust and
easy to compute. And, while agnostic to network topology and to specific line discretiza-
tions employed in DXA and DDDmodels, the resulting field can approximate an arbitrary
dislocation line network to any desired accuracy using appropriately small grid spacing.
As a measure of distance between two dislocation networksN1 andN2 represented by

two fields α
N1
ij

(
xd

)
and α

N2
ij

(
xd

)
, we use the following metric

E(N1,N2) =
∑
�d

∑
ij

(
α
N1
ij

(
xd

)
− α

N2
ij

(
xd

))2
(2)

where i, j = {1, 2, 3} are the indices of the Nye’s tensor components and the external
sum runs over all grid points. The superscripts indicate that two Nye’s tensor fields are
on-the-grid representations of two dislocation line networksN1 andN2.
Consider now two successive dislocation networksNt andNt+�t extracted from snap-

shots taken at time t and t + �t, respectively. To reconnect the two networks let us now
deform network Nt so as to match its Nye’s tensor field α

Nt
ij

(
xd

)
as closely as possible

to the Nye’s tensor field α
Nt+�t
ij

(
xd

)
of network Nt+�t . Here by network deformation we

mean an arbitrary distortion of network geometry (moving network nodes and segments
around) without changing network topology (which segments connect which nodes).
This trick of isotopological deformation is intended to find a deformed earlier network
Ñt+�t as a best geometric approximant of the later networkNt+�t while maintaining the
original topology of network Nt . Best matching can be achieved by deforming network
Ñt+�t so as to minimize its on-the-grid distance to networkNt+�t . Minimization of the
distance metric function is performed with respect to positions {r} of all nodes of the
deformed network Ñt+�t using an appropriate numerical method, e.g. gradient-descent.
If needed the grid can be adaptively refined to achieve closer matching. More details on
the numerical implementation of the algorithm are provided in Appendix A.
Given that networks Nt and Ñt+�t have the same topology by construction, incre-

mental motion of each line segment of network Nt can be unambiguously traced by
connecting two end nodes of each segment in Nt to the corresponding end nodes of the
same segments in the deformed network Ñt+�t . As illustrated on Fig. 1a, the quadri-
lateral with two edges coinciding with two positions of the same line segment in Nt and
Ñt+�t and two other edges connecting (tracing) its end nodes, defines a unit slip facet.
In addition to the Burgers vector bi of its line segment, each slip facet i is assigned vector
�Ai of magnitude equal to the area swept by the segment over time interval from t and
t + �t and of direction normal to the plane in which the segment glides over the same
time interval. Thus, contribution of each slip facet to the net plastic distortion of the crys-
tal is �γ i = �Ai ⊗ bi/V , where V is the crystal volume. As defined, the slip facets are
not necessarily flat, but their �Ai vectors can be approximated as cross-products of two
facet diagonal vectors, as depicted in Fig. 1a. Excessive “warpage” of any such slip facet
is an indication that time interval �t and/or grid spacing are probably too large. Optimal
values of �t and grid spacing are defined by user’s demands on accuracy and available
computational resources. More details on the choice of the STA parameters and on the
validation of the approach by comparing to DDD data are presented in Appendix B.
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Fig. 1 a Schematic of a unit slip facet (�Ai , bi) (shaded quadrilateral) extracted with the STA algorithm by
reconnecting networksNt (green nodes and segments) andNt+�t (blue nodes and segments) through
approximant Ñt+�t (red nodes and dashed red segments). The magnitude �Ai = ‖�Ai‖ of the normal
vector is equal to the area swept by the segment over the same time interval �t. (b–d) Dislocation motion in
the form of slip facets extracted using the STA algorithm from an MD simulation of metal plasticity in bcc Ta.
b The green lines show dislocation positions at time t = 0. The blue surfaces are composed of slip facets
reconnecting positions of the same dislocations at c t = 5ps and d t = 10ps

Figure 1b-c is an example of slip facets obtained as the output of the STA algorithm
applied to a series of successive dislocation networks extracted from an MD simula-
tion of metal plasticity in tantalum. Another example of STA output is presented in
Supplementary Movies 1-3.

Results
MD simulations setting

As a case study we applied STA algorithm to DXA data extracted from MD simula-
tions of tantalum single crystals. In this section we use STA analyses to establish if and
how two hallmark phenomena of crystal plasticity in BCC metals, namely the notorious
tension/compression (T/C) asymmetry and its related phenomenon of twinning/anti-
twinning (T/AT) asymmetry, manifest themselves in crystallography of dislocation
motion. MD simulations reported here were performed on small fragments of the BCC
lattice seamlessly embedded into an infinite crystal using 3D periodic boundary condi-
tions using the open source code LAMMPS (Plimpton 1995). The crystals were created
with atoms arranged in orthorhombic periodic supercells with repeat vectors aligned
along the cube axes of the BCC lattice. Dislocations were seeded into the crystal in the
form of hexagon-shaped prismatic loops of the vacancy type after which the model crys-
tals were equilibrated at 300K under zero pressure. The crystals were then subjected to
uniaxial deformation along the [001] direction at a ‘true’ strain rate of ε̇ = 2 × 108/s
while maintaining the ambient conditions using an appropriate barostat and a thermostat.
Poisson expansion (under compression) and contraction (under tension) were enabled
resulting in a pure uniaxial stress state. To model the inter-atomic interactions in tan-
talum we employed a well known EAM potential developed by Li et al. (Li et al. 2003).
During the simulations, dislocation networks were extracted on-the-fly every �t = 1 ps
apart using the DXA algorithm (Stukowski 2014). The so-extracted dislocation network
snapshots were then reconnected using the STA algorithm thus providing statistical data
for further analyses.
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Tension / compression asymmetry in single-loop simulations

We first examine the case of a single prismatic loop subjected to compression or ten-
sion. A hexagon-shaped prismatic loop of 15 nm radius of the vacancy type with Burgers
vector 1

2 [ 111] was initially carved out near the center of a cubic simulation cell with side-
length 66 nm containing about 16 million atoms. The three pairs of opposite edges of
the hexagon were aligned with three 〈112〉 directions of the [111] zone. Once relaxed, the
edges formed three pairs of pure edge dislocations, each pair lying on one of the three
{110} planes of the [111] zone. Of our primary interest here is the still unresolved issue
of slip crystallography (Weinberger et al. 2013), namely in which planes the dislocations
glide (or slip) while producing plastic strain in BCC metals.
As discussed in (Duesbery and Vitek 1998; Ito and Vitek 2001; Vitek 2004; Dezerald

et al. 2016), at its base the tension/compression asymmetry in BCC metals originates
in a geometric twinning/anti-twinning (T/AT) asymmetry of crystallographic slip in the
planes of the 〈111〉 zones. It is straightforward to observe that, for all shear planes of
the 〈111〉 zone except {110}, the change in relative positions of atoms induced by a small
shear displacement along the densely packed 〈111〉 directions depends not only on the
magnitude of the shear displacement but also on its sign: shearing along a 〈111〉 direction
in the twinning (T) directionmeets less resistance that shearing along the same slip vector
in the opposite anti-twinning (AT) direction. This rather basic geometric asymmetry is
the reason why deformation twins in BCC metals nucleate and grow only in the sense of
twinning shear but never as anti-twins. The same geometric asymmetry translates into a
markedly higher resistance (e.g. Peierls stress) to dislocation motion in the {112} planes
sheared in the AT direction than to the motion of the same dislocations under shear in
the T direction. The T/AT asymmetry affects resistance to motion of dislocations of all
characters in all planes other than {110}.
For a more detailed analysis of T/AT asymmetry on slip crystallography, rather than

dealing with planar shears and stress (which are tensors), its convenient to consider dis-
placements of and Peach-Koehler forces on screw dislocations. As illustrated in Fig. 2,
when a BCC crystal is strained along its [001] axis, the PK force acting on a screw 1

2 [ 111]
dislocation is parallel to the vertical (112̄) slip plane often referred to in the literature as
the maximum resolved shear stress plane (MRSSP). In the specific frame of Fig. 2, the PK
force acting on a right-hand screw dislocation points downward under [001] compression
and upward under [001] tension (the PK force on a left-hand screw will point in the oppo-
site directions). We can now use slip facets extracted from a sequence of DXA snapshots
to observe in which planes the dislocations prefer to move.
Figure 3a–b show dislocation configurations attained after straining the crystal over

time t = 200 ps under compression (a) and under tension (b). Although two configu-
rations are clearly different, it is hardly possible to tell visually from the static snapshots
how the dislocation motion contributed to their differences. To understand and quantify
differences in slip crystallography, we use STA facets computed on the sequences of dis-
location networks extracted from two MD trajectories using the DXA method. Figure 3
uses two different ways to display slip facet statistics. Shown in Fig. 3c–f are the inte-
gral statistics of slip facet normals computed on every pair of DXA dislocation networks
extracted at intervals 1 ps and accumulated over time from t = 0 to t = 400 ps. Individ-
ual contributions of the slip facets to this integral distribution are weighed by each facet’s
area. In Fig. 3c-d the distribution of slip normals is plotted in equi-rectangular projection
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Fig. 2 Crystallographic directions and planes relevant for the motion of 1
2 [ 111] dislocations. The

1
2 [ 111]

zonal vector is pointing out towards the viewer. The arrows show directions of the Peach-Koehler (PK) force
acting on a right-hand screw 1

2 [ 111] dislocation under compression (Fcomp) and tension (F tens) along the
[001] axis. In both cases the PK force is parallel to the vertical (112̄) slip plane, referred to as the maximum
resolved shear stress plane (MRSSP)

Fig. 3 Slip behavior of a single 1
2 [ 111] prismatic loop introduced into an otherwise perfect crystal of BCC Ta

and subjected to uniaxial compression or tension along the [001] axis. a–b DXA snapshots of the dislocation
configurations attained after t = 200 ps under a compression and b tension. c–dMaps of dislocation flux
extracted from STA facets accumulated from time t = 0 to t = 400 ps under c compression and d tension.
The maps are the equi-rectangular (geographic) projections of the cumulative distribution over the
hemi-sphere of the slip facet normals {�Ai} (i.e. effective slip planes). Contribution of each facet �Ai to the
slip plane orientation statistic is weighted by the facet’s swept area or incremental flux �γ i = �Ai‖bi‖/V .
e–f Probability distribution of the cumulative flux as a function of the [111] zonal plane angle and dislocation
character under e compression and f tension
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(i.e. geographic projection most commonly used in plotting world maps) as a function of
the elevation (latitude) and the azimuthal angle (longitude) both given in radians. Because
facets with normals [ hkl] and [ h̄k̄l̄] correspond to slip on the same crystallographic plane
(hkl), it is sufficient to map this and other similar distributions over a hemi-sphere. The
projection is oriented so that the set of vectors zonal (perpendicular) to the 1

2 [ 111] Burg-
ers vectors traces one half of a full sinusoid on the map. To correct for area distortion
specific to this geographic projection, contribution of each facet normal to the cumula-
tive distribution was additionally weighed by the sine of its latitude angle. Density of the
slip facet distributions is expressed in the color scale shown on the right side of each map.
On Fig. 3e–f the same cumulative distributions are presented as functions of the dihedral
(zonal) angle between the facet plane and the reference (1̄10) plane of the [111] zone (hor-
izontal plane in Fig. 2). On the last two plots the flux is further partitioned into its screw
and non-screw components counting as screw all dislocation segments with the character
angles θ < 20◦ (where θ is the angle between the segment line direction and its Burgers
vector).
The STA data presented in Fig. 3 shows how T/AT asymmetry manifests itself in the

motion of dislocation lines composing the loop. In both cases, the loop is oriented with
respect to the [001] straining axis so as to induce slip of four out of six edge segments in
the (011̄) and (101̄) planes. And indeed, this is precisely what happens as soon as strain-
ing commences: edge segments in each of two active slip planes begin to move in the
opposite directions making the loop rotate. At the same time, the remaining two inactive
segments in the (11̄0) plane gradually align with the loop’s Burgers vector drawing into
two long screw dislocations. The loop rotates in the opposite directions under tension
and compression because of the different sign of the resolved shear stress. Appearance of
slip in the {112} planes is a clear indication that the newly drawn screw dislocations glide
into {112} planes both under compression, Fig. 3e, and under tension, Fig. 3f. (Note that
the initial edge segments of the loop are confined to glide on their {110} planes). However,
relative contribution of {112} slip to the accumulated plastic flux and, most importantly,
in which particular {112} planes such slip is taking place, are markedly different in tension
and compression.
Under tension two freshly drawn screws glide right away on the (112̄) MRSSP which

is reflected in the large peak around the (112̄) MRSSP in Fig. 3f. This is accompanied by
glide of non-screw dislocations that follow the screws into the same MRSS plane. Two
smaller peaks on the same plot near the (011̄) and (101̄) planes correspond to the initial
expansion of the active edge segments of the prismatic loop, however much of subsequent
slip takes place in a narrow interval of zonal angles near the MRSSP. Under compression,
the drawn screws remain immobile and straight while the remaining non-screw segments
continue to glide thus accumulating substantial amount of slip in two active {110} planes.
Eventually, on reaching still higher stress, the screws begin to glide but, rather than gliding
on theMRSSP, screw glide takes place on (1̄21̄) and (21̄1̄) planes less favorably aligned for
slip (their Schmid factors are 0.235 which is only half of that on the MRSSP, at 0.47), as
attested by two small peaks around these two planes in Fig. 3e. Dislocations glide under
compression is overall insufficient to continue to relieve stress and an altogether different
mechanism of stress relief – twinning – is triggered once uniaxial strain approaches ∼0.4
(see Zepeda-Ruiz et al. (2017) for details of twinning transition in the same model of
tantalum).
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Tension/compression asymmetry in large-scale MD simulations of bulk crystal plasticity

Having examined crystallography of dislocation slip originating from a single initial loop,
we now apply our STA algorithm to see how individual dislocations move under tension
and compression when immersed in a statistically representative ensemble of interact-
ing dislocations. In order to simulate dislocation plasticity in the bulk, we followed the
methodology described in (Zepeda-Ruiz et al. 2017) and seeded initial dislocations into
the crystal in the form of three hexagon-shaped prismatic loops of 15 nm radius for each
of the 1

2 〈111〉 Burgers vectors (i.e. 12 loops in total). The loops were randomly posi-
tioned in the simulation volume containing about 225 ∼ 33 million atoms, with initial
dimensions of 66nm × 66nm × 135nm in compression, and 106nm × 106nm × 53nm in
tension.

Asymmetry in the stress-strain response

Stress-strain response and dislocation density evolution observed under tension and
compression in our bulk MD simulations is presented in Fig. 4. Consistent with experi-
mental observations (Byron and Hull 1967; Hull et al. 1967; Sherwood et al. 1967;Webb et
al. 1974), the simulated flow stress and dislocation density curves reveal a clear asymme-
try with respect to the loading direction. We note however that, while asymmetry in yield
response to tension and compression along the [001] axis is well established, experimen-
tal data on tantalum is conflicting. For instance, Sherwood et al. (1967) report higher yield
stress under [001] compression in single-crystal Ta compared to tension at low tempera-
tures with any such asymmetry vanishing at room temperature. On the other hand, Byron
and co-workers (Byron and Hull 1967; Hull et al. 1967) report the opposite, with a higher
yield stress observed under [001] tension compared to compression at 300K. In our MD
simulations, both the flow stress and the dislocation density attained under compression
are markedly higher than under tension. Our results are also consistent with an extensive
study of Argon and Maloof (1966) who examined flow stress asymmetry by performing

Fig. 4 a Comparison of MD and STA stress-strain curves for bcc Ta strained along the [001] axis in
compression and in tension at a strain rate of ε̇ = 2 × 108 /s. The STA stress-strain curves are reconstructed
from slip facet data computed using the STA algorithm after which a 3% systematic correction is applied. b
Evolution of dislocation densities ρ extracted from DXA snapshots of the same two simulations
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sequences of [001] tension/compression cycles in single-crystal Ta in the temperature
range 77K-450K. While still puzzling, we observe that nearly all cited experimental data
pertains to T/C asymmetry in the yield stress which is known to depend on initial (pre-
deformation) dislocation microstructure. In our simulations, the initial microstructures
– prismatic loop sources – were exactly the same prior to tension and compression. Fur-
thermore, as was shown in (Zepeda-Ruiz et al. 2017), after sufficiently large plastic strain
(∼ 0.4 − 0.5 of true strain), all memory of initial dislocation microstructure in MD sim-
ulations is wiped off and both the flow stress and the dislocation density attain a state
of steady flow in which they remain for as long as straining conditions remain constant.
Thus, we consider our results on the steady flow stress to be representative of intrinsic
material response independent of details of sample preparation. We further note that a
similar T/C asymmetry has been observed in BCCmetals other than tantalumwhich sug-
gests that this asymmetry is generic to all BCC metals and ultimately originates in the
particular geometry of the BCC lattice (Christian 1983).
To verify our STA approach, we first compare net plastic strain produced in our MD

simulations with the same plastic strain computed by summing over plastic strain incre-
ments associated with each slip facet extracted during the same simulations. The STA
method can be considered accurate to the extent that these twomeasures of plastic strains
are equal. The axial zz component of the plastic rate tensor at time t must be equal to the
following sum over slip facets computed by reconnecting two DXA snapshots extracted
at times t and t + �t:

ε̇
p
zz = �ε

p
zz

�t
= 1

�t V
∑
i

�Ai
z b

i
z (3)

Total plastic strain attained at time t should be equal to the time integral of the above
expression over all slip facets produced by the same time t. Expressed as a function of
total strain, the flow stress should be equal to

σzz(εzz) = E
∫ t(εzz)

0

(
ε̇ − ε̇

p
zz

)
dt (4)

The above expression reconstructs flow stress σzz from instantaneous plastic strain rate
ε̇
p
zz obtained as a sum over all slip facets computed over time interval �t. Here, V is the
simulation volume, E = 119.26 GPa is the Young’s modulus for the [001] straining direc-
tion and ε̇ = 2×108/s is the constant straining ratemaintained along the z axis. To exclude
initial transient plasticity, we first computed ε̇

p
zz and integrated the resulting strain rates

over simulation time interval from t = 1.25 ns to t = 3.75 ns over which total strain
increases from 0.25 to 0.75. The resulting reconstructed plastic strain is 0.515 in compres-
sion and 0.487 in tension, which are both within 3% of 0.5. After applying a systematic
3% correction to the values of ε̇

p
zz, the entire stress-strain curves reconstructed from the

STA data using Eq. (4) are compared to the MD curves in Fig. 4. The agreement with
the MD results is very close: the reconstructed and the actual stress-strain curves nearly
overlap and the reconstructed curves closely track time sequence of the actual stress fluc-
tuations. Figure 4 verifies consistency of our STA algorithm and confirms that every detail
of macroscopic stress-strain response can be ultimately traced to the underlying motion
of dislocations.
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The stress-strain curves in Fig. 4a show clear T/C asymmetry with both yield and flow
stress under compression markedly higher than under tension. Similar but much less pro-
nounced asymmetry is evident in the dislocation density-strain plots in Fig. 4b, with the
dislocation density attained under compression higher than under tension. We note that,
within the standard Taylor hardening equation relating resolved shear stress to the square
root of dislocation density, the moderately higher dislocation density attained under com-
pression is clearly insufficient to explain the much higher flow stress: the ratio of square
roots of two dislocation densities is ∼ 1.1 whereas the ratio of two flow stresses is ∼ 1.8.
Taylor hardening correspondence is improved if the shear stress is computed by project-
ing the axial stress on two inclined {112} planes stressed in the T sense under compression
rather than projecting on the MRSSP as is appropriate for tension. In the latter case,
because the Schmid factors of the two inclined {112} planes are precisely half that of the
MRSSP, the same Taylor hardening equation yields 2.2 for the ratio of flow stress under
compression to the flow stress under tension.

Asymmetry in crystallographic slip

Having earlier observed that memory of initial dislocation sources persists to rather sub-
stantial strains, to exclude such transients and to analyze intrinsic crystallography of
dislocation motion we show in Fig. 5a-b the integral statistics of slip facet normals com-
puted on every pair of dislocation networks over the interval of true strains from 0.5 to
1.0. Normals of slip facets traced by dislocations moving by conservative glide should be
strictly confined to the planes of the four Burgers vector zones and thus should fall on the
four sharp sinusoids on our equi-rectangular maps. The actual STA facet normals appear
to be spread over a finite interval of ∼ 2 to 4 angular degrees around the zonal sinusoids

Fig. 5 Slip maps of dislocation motion under [001] uniaxial compression and tension during simulations of
bulk plasticity. a–bMaps of the cumulative dislocation flux γ from all dislocations from strain 0.5 to 1. c–d
Maps of the cumulative dislocation flux from the 1

2 [ 111] dislocations alone. Positions of relevant
crystallographic slip planes along the [111] zone are indicated. e–f Probability distribution of slip facets area
as a function of the 〈111〉 zonal plane angle for all 12 〈111〉 dislocations. The flux is further partitioned into
screw and non-screw dislocations contribution, where non-screw dislocations correspond to facets with
character angle θ ≥ 20◦ . The thin dashed line is the Schmid factor variation over the zone with its scale
shown on the right axis
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which is likely to reflect finite accuracy of dislocation positioning in DXA and STA and/or
local lattice rotations induced by dislocations.
Slip facet distributions observed under compression and under tension are again asym-

metric, but not in the same way as in the previously discussed case of single loop. To
reduce clatter, Fig. 5c-d shows the same statistics of slip facet orientations as in Fig. 5a-b
but only for a 1/4 subset of slip facets associated with the 1

2 [ 111] dislocations (distribu-
tions associated with the other three 1

2 〈111〉 Burgers vectors are similar by symmetry).
Under tension (Fig. 5d), dislocation slip is again largely localized on and near the (112̄)
MRSSP plane with the PK force pointing in the T direction (see Fig. 2). Even though under
compression the MRSSP is just as perfectly aligned with the same (112̄) plane, the PK
force now acts in the AT direction and, rather than gliding in the (112̄) MRSSP, slip activ-
ity becomes rather defuse, spreading with relatively constant intensity over a much wider
range of plane orientations than under tension.
Figure 5e–f show slip facets distributions for all 1

2 〈111〉 dislocations as functions of the
〈111〉 zonal plane angle and partitioned between screw and non-screw dislocation seg-
ments. Here the zonal angle is defined as the angle between the slip plane associated with
each facet and a reference {110} plane (shown horizontal for 1

2 [ 111] in Fig. 2) chosen
for each Burgers vector so that an angle of 90◦ corresponds to slip on the {112} MRSSP.
Here again, any segment with the character angle θ < 20◦ is counted as screw. Figure 5f
shows that under tension both screw and non-screw dislocations glide predominantly
on or near the {112} MRSSP. Under compression, the screws glide in still wider sectors
of each Burgers vector zone showing slight enhancements of flux on two inclined {112}
planes stressed in the T direction, and {110} planes. At the same time, glide of the screw
dislocation on and around the MRSSP is relatively suppressed, Fig. 5e. When summed
over all dislocation characters, the overall flux distribution shows a broad dome-shaped
maximum centered on MRSSP quite similar to the fractional distribution associated with
non-screw dislocations. By comparing our STA data in Fig. 5e–f, the tension/compression
(or T/AT) asymmetry presents itself in marked differences in slip crystallography that are
not limited to screw dislocations but involve all dislocation characters. Whereas under
tension dislocations of all characters glide predominantly in a narrow zone around the
{112} MRSSP, under compression the enhanced resistance to screw dislocation glide in
the AT directions results in a relative depletion of screw characters near MRSSP and in a
much wider distribution of dislocation flux over the planes of the Burgers vector zone.
The double dot product of the geometric Schmid tensor with the stress tensor is the

Schmid factor m, a scalar measure of efficiency with which mechanical stress performs
work on moving dislocations in a given slip system (slip system = {Burgers vector, slip
plane}). The larger the Schmid factor the greater the PK force dislocations see from the
applied stress. Thus, dislocations are expected to be more active – move faster and/or
multiply at a faster rate – in slip planes with higher Schmid factors. As shown on the
right axis in Fig. 5e, under compression flux distribution over all dislocation characters
closely follows variations of the Schmid factor across the zone, thus corresponding to the
often-hypothesized pencil (non-crystallographic) motion of dislocations: the amount of
slip (swept area) produced in each slip plane of the zone is proportional to the plane’s
Schmid factor. Under uniaxial stress conditions imposed in MD simulations reported
here, the same Schmid factor defines howmuch a unit of slip produced in a given slip sys-
tem contributes to ε

p
zz, the component of plastic strain parallel to the straining axis. Under
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definition of the zonal angle adopted in Fig. 5, the Schmid factor of a plane with angle φ is
simply sin(φ) ∗mMRSSP wheremMRSSP = 0.47 is the maximum Schmid factor of the zone
at φ = 90◦ corresponding to the MRSSP plane. Taken over the zonal angle, the integrals
of the product of the Schmid factor and the flux distributions shown in Fig. 5e-f provide a
measure of relative efficiency in relieving external strain of dislocation motion under ten-
sion and under compression. The so-averaged integral efficiency is 0.42 under tension and
0.37 under compression. This is in close agreement with the ratios of the imposed strain-
ing rate to the total (integral) dislocation flux observed in Fig. 6a in our MD simulations
under tension and compression. That the so-defined slip efficiency approaches its geo-
metric maximum for the zone mMRSSP = 0.47 indicates that under tension dislocations
move on and very close to the MRSSP. The lower slip efficiency of 0.37 under compres-
sion corresponds to a hypothetical crystal in which all dislocations glide only in planes
inclined at an angle of approximately 38 degrees to the MRSSP. Of course this does not
mean that dislocations glide “somewhere between” the {110} and {112} planes inclined to
MRSSP, but is a consequence of the pencil character of dislocation slip under compres-
sion. As another check on consistency of the STA algorithm, the ratio of the imposed
straining rate to the integral dislocation flux projected on the straining axis (i.e. the plastic
strain) is also shown on Fig. 6a. As expected, both under tension and under compression
the flux projected on the straining axis rapidly converges to the imposed straining rate ε̇

indicating that, except for relatively brief initial yield transients, the externally imposed
strain is fully accommodated by dislocation slip (Zepeda-Ruiz et al. 2017). Overall, our
STA data shows that glide of non-screw dislocations contributes relatively more to dis-
location flux and to the net crystal plasticity (see Fig. 5e–f) which is further confirmed
by noting that the ratio of screw to non-screw flux remains relatively stable and oscillates
around ∼0.55 under both tension and compression, Fig. 6b.

Asymmetry in dislocationmicrostructure and dislocation velocities

Along with slip crystallography, we observe noticeable differences in dislocation
microstructure under tension and compression. Figure 6c shows dislocation density par-
titioned over screw and non-screw populations as a function of strain. One signature of
the T/C asymmetry is that the total dislocation density is higher in compression than in

Fig. 6 In all panels curves pertaining to tension are shown in orange and curves pertaining to compression
are shown in blue. a Ratio of the imposed straining rate to the total dislocation flux ε̇/γ̇ (solid lines) and ratio
of the rate of plastic strain accumulation to the imposed straining rate ε̇/ε̇

p
zz (dashed lines). b Ratio of the flux

due to screw dislocations to the flux due to non-screw dislocations. (c) Densities of screw (solid lines) and
non-screw (dashed lines) dislocations as functions of strain
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tension (Fig. 4b) and that all of the difference is attributed to the screw sub-population,
Fig. 6c. Although the quantities plotted on this figure depend on our somewhat arbi-
trary partitioning of dislocation segments into screw and non-screw sub-populations,
other definitions for the screw/non-screw partitioning lead to qualitatively similar results:
screw dislocations are more numerous than non-screws and the difference is greater
under compression.
STA computes unit slip facets from two snapshots of the dislocation network sepa-

rated by �t. As defined in Fig. 1a, each slip facet contains information about the distance
its segment moves over time �t and retains information on the segment’s length thus
making it straightforward to compute the segment’s velocity (averaged over �t). A few
statistical measures of dislocation velocity distribution computed on our MD simulation
data are presented in Fig. 7. Positions of initial peaks in the average dislocation velocity
(partitioned over screw and edge sub-populations) coincide with the peaks on the cor-
responding stress-strain curves (compare to Fig. 4a). Past the initial yield peaks, average
velocities gradually decrease and approach their asymptotic values at a rate similar to the
relaxation rate of the dislocation density (compare Fig. 7a-b to Fig. 4b). By comparison, as
was first noted in (Zepeda-Ruiz et al. 2017), the flow stress relaxes to its stationary level
at a faster rate (Fig. 4a), especially under compression. Another pertinent observation is
that, initially reaching ∼12 at yield under compression and ∼6 under tension, past yield
the ratio of edge to screw dislocation velocities gradually descends to much lower levels,
Fig. 7c. These observations point to a scenario in which, as is commonly assumed, the
yield stress is indeed defined by a high intrinsic lattice resistance to the motion of screw
dislocations (at moderate temperatures). Flow stress past yield is increasingly defined by a

Fig. 7 Average velocities ṽ of screw and non-screw dislocation populations extracted from STA facets
computed under uniaxial a compression and b tension. c Ratio of average velocity of non-screw dislocations
to average velocity of screw dislocations as a function of strain. d Dislocation velocities averaged over strain
interval from 0.5 to 1.0 broken down dislocation character angle
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growing network resistance to dislocationmotion to such an extent that in the steady flow
regime under tension screw and edge dislocations move at nearly the same average veloc-
ities. And while the screws remain slower than the edges under compression, the ratio of
edge/screw velocities goes down from ∼ 12 at peak to ∼ 2 in the steady flow. To avoid
ambiguities due to the mentioned dependence of quantitative results on our specific con-
vention for screw/edge partitioning, Fig. 7d shows the same statistics over the entire range
of dislocation character angles accumulated over strain interval from 0.5 to 1.0 which
excludes the initial yield transients. While the average velocities seem to be relatively uni-
form across character angles under tension, dislocations of near-screw characters remain
markedly slower under compression.
Figure 8 shows the breakdown of dislocation links by their contribution to the overall

plastic strain. Here a link is defined as a dislocation line connecting two network nodes
(Sills et al. 2018). Although related to the segment velocity distributions discussed above,
links are different objects typically consisting of multiple segments of varying characters.
Unlike segment mobility data in Fig. 7 pertaining to mobility of dislocation segments of
different characters, breakdown by links is focused on the network aspects of dislocation
motion. Figure 8a shows cumulative contribution to plastic strain of all links integrated
from the lowest to the highest contributors. If every link were to contribute an equal plas-
tic strain, this cumulative function would follow the straight dashed line drawn in the

Fig. 8 Inequality of participation of dislocation links in producing plastic strain. a Cumulative plastic strain as
a function of the fraction of dislocation links ordered from the lowest to the highest contributor. The dashed
line corresponds to equal participation. b Evolution of the Gini coefficient under compression and tension.
c–d Evolution of percentile contributions to plastic strain under compression (c) and tension (d): each line
shows the fraction of highest contributor links responsible for a certain percentile of plastic strain, plotted as
functions of strain



Bertin et al. Materials Theory             (2022) 6:1 Page 16 of 23

figure. Instead, both under tension and under compression on average about 40% of all
links contribute virtually nothing to the net plastic strain. Above 40%, contribution of
links to plastic strain grows increasingly rapidly with top 5% contributing 50% of the net
plastic strain. To quantify inequality among individual link’s contributions to crystal plas-
ticity, we use the Gini coefficient commonly used in socio-economic contexts (Dorfman
1979). The Gini is equal to the fraction of the area of the triangle enclosed between the
inclined dashed line and the cumulative distribution curve: the Gini is zero in the limit
when all links contribute equally and is one in the limit when only the highest contribut-
ing links produce all the strain. Here the Gini coefficient is calculated as (Dorfman 1979):

G =
∑n

i=1
∑n

j=1

∣∣∣εpi − ε
p
j

∣∣∣
2n2 ε̄p

(5)

where ε
p
i is the plastic strain produced by link i over time interval �t, ε̄p is the aver-

age plastic strain generated by all links during the same time interval, and n is the total
number of links. The Gini coefficients computed along our two straining trajectories are
plotted in Fig. 8b as functions of strain. During the initial transients both under ten-
sion and compression all dislocations pre-seeded in the form of prismatic loops move
quickly and evenly resulting in a low Gini coefficient. Then after reaching their peaks
at strains close to the upper yield points, both Ginis gradually decrease to their steady
values of 0.76 (compression) and 0.69 (tension). For reference, Gini values characteriz-
ing income inequality among countries of the world range between 0.2 (relative equality)
and 0.6 (extreme inequality). The very high Gini’s observed in our MD simulations sug-
gest “extreme inequality” among the links in their contribution to crystal plasticity, the
inequality more extreme under compression than under tension.
Another common way to represent inequality is in percentiles. In Fig. 8c–d we plot

the fraction of top contributor links responsible for a given percent of plastic strain. The
plots again show that about 5% of the most active dislocation links produce 50% of the
net plastic strain (green) while 99% of plastic strain is produced by roughly half of all
links (red) with the remaining links contributing only about 1%. Although some of the
so-quantified inequality can be related to differences in link lengths (Sills et al. 2018),
most of it reflects that only a small fraction of active links is moving appreciably at any
instant of time while the rest of the links stays relatively motionless. This behavior is
well captured in the STA snapshots in Fig. 1c-d (notice unequal widths of slip surfaces
depicted in blue) and is consistent with a “stop-and-go” character of dislocation motion
often assumed in strain-hardened metals in which dislocations spend most of their time
waiting at obstacles, e.g. dislocation junctions, and only on occasion breaking away and
moving fast only to be tied up again at yet another obstacle. Remarkably, we observe the
same behavior under extremely high straining rates, at the very limit where dislocations
can still accommodate plastic straining.

Discussion and conclusion
STA data presented in the preceding sections directly connects tension/compression
asymmetry in plasticity response of tantalum to an underlying T/AT asymmetry of dis-
location motion in BCC crystals. In our high-rate MD simulations of uniaxial straining
along the high-symmetry [001] axis, most slip activity of screw dislocations occurs on
and near the {112} MRSSP planes under tension. Under compression screw dislocations



Bertin et al. Materials Theory             (2022) 6:1 Page 17 of 23

glide in much wider sectors of glide planes with minor enhancements of slip activity at the
{112} and {110} planes inclined at angles to the MRSSP. Similar asymmetry is observed in
the motion of non-screw dislocations that glide at and near MRSSP under tension while
gliding in all zonal planes under compression. When integrated over all dislocation char-
acters, dislocation slip is crystallographic (largely confined to the {112} MRSSP) under
tension and pencil (distributed all over the 〈111〉 zones) under compression. The asym-
metry is rationalized by observing that dislocation glide in the {112} planes is easy in the
twinning directions whereas glide of the screw dislocations in the anti-twinning sense is
difficult. Given that each Burgers vector zone has three twinning directions at 120◦ angles
with each other, the sense of dislocation glide – twinning or anti-twinning – is inverted
from tension to compression. Thus, selection of active slip systems in BCC tantalum is
based not only on the magnitude of their Schmid factors, but also on the Schmid factor’s
signs with respect to the twinning directions of dislocation glide.
Our approach to elucidating origins of tension/compression asymmetry of the flow

stress in BCC metals differs from prior work focused on the behavior of a single screw
dislocation in an atomistic model (Ito and Vitek 2001; Vitek 2004; Dezerald et al. 2016;
Kraych et al. 2019). Here, our large-scale MD simulations present a unique opportunity
to investigate the same behaviors in silico, using a combination of DXA and STA analyses,
in large statistically representative dislocation ensembles fully accounting for interactions
among dislocations of all characters, screw and non-screw alike.
Observations of dislocation slip reported in this study are largely consistent with exper-

imental results. In (Sherwood et al. 1967), {112} slip was observed under [001] tension
(along with some twinning at 77K) while deformation was reported to proceed on {110}
planes under compression. Similar results where observed in (Byron and Hull 1967; Hull
et al. 1967), where the operating slip planes in tension were seen to be those aligned
with the MRSSP, while in compression greater deviations from the MRSSP towards {110}
planes were observed. Recently, dislocation motion in {112} planes in the twinning sense
was observed in in situ TEM experiments on single crystal tungsten subjected to ten-
sile loading while, at the same time, no motion in {110} planes was observed (Caillard
2018). {112} slip at moderate temperatures was also recently observed experimentally
through scanning tunnelingmicroscope in niobium crystals (Douat et al. 2019), where the
manifestation of the T/AT asymmetry and pencil (non-crystallographic) slip were clearly
confirmed in the slip trace statistics. At the same time, our observations do not fully agree
with the predominance of {112} glide in tantalum single crystals reported very recently
based on data of quasi-static and dynamic compression experiments (Lim et al. 2020).
By analyzing slip traces observed in single crystal tantalum subjected to compressive
straining and comparing their experimental results with crystal plasticity finite element
calculations, the authors concluded that 〈111〉{112} glide was the dominant mechanism
of crystal plasticity under compressive loading.
To assess robustness of our results and observations on tantalum, we repeated the

same two large-scaleMD simulations using two other EAM inter-atomic potentials devel-
oped for BCC tungsten in (Juslin and Wirth 2013) and for BCC iron in (Mendelev et
al. 2003). Just as in tantalum, robust tension/compression asymmetry in the yield and
flow stress response is observed in tungsten and iron. Furthermore, subsequent STA
analyses revealed qualitatively identical asymmetry in slip crystallography and dislocation
microstructure. It was previously suggested that dislocation glide in {112} planes often
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observed in MD simulations is as a consequence of the known tendency of some inter-
atomic potentials to predict a wrong (degenerate) core structure for the screw dislocation
(Chaussidon et al. 2006), or the presence of metastable split core structures (Hale et al.
2014). We observe that {112} slip of screw dislocations under tension dominates in all
three interatomic potential models employed in our MD simulations two of which (Ta
and α-Fe) are known to predict correct (non-degenerate) core structure. Factoring in the
{112} slip predictions obtained with ab-initio calculations in Ta (Woodward and Rao 2002;
Segall et al. 2003) and the recent experimental observations mentioned in the above (Lim
et al. 2020), we thus believe that, irrespective of accuracy or inaccuracy of the interatomic
potentials, twinning/anti-twinning induced asymmetry of slip crystallography is the root
cause of tension/compression asymmetry inmacroscopic crystal plasticity of BCCmetals.
In conclusion, we developed a practical computational method for extracting details

of dislocation motion from large-scale simulations of crystal plasticity. Our new sweep-
tracing algorithm (STA) tracks dislocation motion by reconnecting successive dislocation
configurations generated in mesoscale DDD simulations or extracted from MD simula-
tions using the DXA algorithm. STA relies on point-wise matching of Nye’s tensor fields
of two dislocation networks to sidestep difficulties associated with pairing dislocation
networks of differing topology and line discretization. As its first application, STA is
applied to elucidate the nature of the notorious tension/compression asymmetry com-
monly observed in BCC metals. Taking in as its input a sequence of dislocation networks
extracted from large-scale MD simulations of tantalum, tungsten, and iron, we used
STA to compute and collect statistics of unit slip facets swept by dislocation segments
which provide a wealth of information on the character of dislocation motion including
slip crystallography. Based on this data, we report that under uniaxial tension disloca-
tions glide primarily on the {112} MRSSP in the twinning direction. In contrast, under
compression dislocation glide is non-crystallographic/pencil with slip activity tightly cor-
related with the Schmid factor and widely distributed over planes of the 〈111〉 zones.
Tension/compression asymmetry is directly related here to the observed refusal of screw
dislocations to glide in the {112}AT directions under compression thus supporting the
long assumed direct relationship between macroscopic tension/compression asymmetry
and crystallographic T/AT slip asymmetry in BCCmetals. Thus, our observations directly
link details of dislocation motion at the atomic scale to the resulting mechanical response
at the macroscopic scale.
In tandem with the widely used DXA algorithm, STA constitutes an accurate and effi-

cient computational method for gaining new insights and for extracting quantitative
information on the dynamics of dislocation motion from massive DDD and MD simula-
tions of crystal plasticity. In this capacity STA provides a valuable tool for addressing the
growing challenge of dealing with immense amounts of numerical data generated in such
simulations.

Appendix
A Numerical implementation of the STA algorithm

In this section we provide additional details regarding the numerical implementation of
the STA algorithm. Given two input dislocation networks Nt and Nt+�t at times t and
t+�t, the algorithm starts by computing their Nye’s field representation, Eq. (1). Numer-
ically, this is done following the approach introduced in (Bertin 2019). Specifically, for a
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given network, the discrete dislocation tensor at grid point xd is calculated as:

αij
(
xd

)
=

Nseg∑
s

bsi t
s
j

∫
Ls
S

(
xd − x

)
dL(x) (6)

where the sum is performed over all segments s = 1, ...,Nseg of the network and the
line integral is carried along each segment Ls. bs and the ts are the Burgers vector and the
unit tangent vector associated with straight segment s, respectively. S(xd − x) denotes a
weighting function associated with each grid point xd that satisfies the partition of unity.
Following (Bertin 2019), we use the Cloud-In-Cell (CIC) weighting scheme (Birdsall and
Fuss 1969) whose three-dimensional expression is given by:

S
(
xd − x

)
=

⎧⎪⎨
⎪⎩

3∏
i=1

(
1 −

∣∣∣xdi −xi
∣∣∣

Hi

)
when

∣∣∣xdi − xi
∣∣∣ < Hi, ∀i ∈ {1, 2, 3}

0 otherwise
(7)

where Hi denotes the grid spacing in each spatial direction i = {1, 2, 3}. As shown in
(Bertin 2019), the choice of this weighting function allows for an efficient, analytical
evaluation of Eq. (6).
Once discrete Nye’s tensor fields are evaluated using Eqs. (6)–(7), the distance between

a pair of networks can be computed from their point-wise difference using Eq. (2). The
task of reconnecting the two networks can now be regarded as an optimization prob-
lem that seeks to minimize the distance E(Nt ,Nt+�t) by taking advantage of the dual
nodal/field representation of the networks. In our implementation this is solved using a
gradient-descent method. Specifically, if one denotes {rt} the set of all nodal positions of
networkNt , the reconnectionNt → Nt+�t can be achieved by iteratively adjusting nodal
positions {rt} such as to minimize the networks distance:

{ri+1
t } = {rit} − δ ∇rt E

(
N i

t ,Nt+�t
)

(8)

where i is the iteration number, ∇rt denotes the gradient operator with respect to the
nodal positions of network N i

t , and δ is a step size controlling the convergence rate.
For convenience, the gradient vector is evaluated numerically by slightly perturbing the
nodes around their current positions. To achieve an optimal convergence rate, an adap-
tative scheme is used to select the step size δ. Several trial values for δ (centered around
the δ value determined at the previous iteration) are tested and the one that leads to the
maximum distance reduction is selected. At each step i, the Nye’s tensor field of inter-
mediate dislocation networkN i

t is recalculated using Eqs. (6)–(7). If needed, an adaptive
resolution scheme can be adopted whereby the discrete grid is being refined gradually
during the iterative process. Convergence is achieved after a maximum number of itera-
tions is reached or once the distance drops below a tolerance threshold, defined by user’s
demands on accuracy and available computational resource. Upon convergence, network
N conv

t = Ñt+�t is obtained as a best approximant of the later networkNt+�t , and nodal
displacements

{
r0t

} → {
rconvt

}
provides the effective trajectory of dislocation segments

for time interval [ t, t + �t].
The STA algorithm is efficient, easily parallelizable, and scales linearly with the number

of nodes in the network, approximately with the cube root of the number of grid points
used to evaluate the Nye’s tensor (the number of voxels intersected by a line segment
increases as N1/3 when the total number of grid points N is increased), and linearly with
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the number of iterations. As an example, for theMD configurations examined in this work
we typically find that convergence is achieved in about 100 iterations. For a fully devel-
oped dislocation network with ∼ 20, 000 nodes (e.g. typical configurations from strain
0.5 to 1.0), this corresponds to CPU times of about 200, 300, and 450 seconds for grid
resolutions N = 163, 323, and 643, respectively, using a single 3.0 GHz processor.

B Validation of STA algorithm against DDD simulations

Here we present a study of the effect of STA method parameters on the method’s accu-
racy. Two main parameters need to be selected to fully define our STA algorithm, namely
(i) time interval �t between consecutive snapshots to be reconnected, and (ii) grid spac-
ing s defining the resolution of the Nye’s tensor field representation of the dislocation
networks. Errors are inevitable at any combination of �t and s but, since STA input is
output of DXA, it is desirable to separate errors originating in the STAmethod itself from
the ones passed on to STA from the preceding DXA analysis. While it may be possible
to estimate DXA own errors, here we opted instead to use DDD simulations as a proxy
method to generate dislocation networks for subsequent STA analysis. In DDD simula-
tions dislocations consist of connected straight segments and the displacement of every
such segment over every time step is known and can be recorded (Arsenlis et al. 2007).
Thus, as a proxy to DXA, DDD simulations are error-free and comparing the “true” slip
facets internally generated in DDD to the slip facet data computed using STA on the same
DDD trajectory makes it possible to evaluate STA’s own accuracy as a function �t and s.
Here we exercise STA on a DDD simulation specifically designed to approximate as

closely as possible our MD simulations. The simulation was performed using the DDD
code ParaDiS (Arsenlis et al. 2007) in the same volume, under the same straining con-
ditions and starting from the same 12 initial prismatic loops as in our MD simulations
described in “Results” section. To make dislocations move as they do in MD, we used
a linear pencil-glide mobility function appropriate for BCC metals (Arsenlis et al. 2007)
calibrated against dislocation mobility data extracted from our own MD simulations of
single screw and non-screw dislocations under the same interatomic potential of Li et al.
(Li et al. 2003). Under compression along the [001] axis at the same rate ε̇ = 2 × 108/s,
the DDD simulation produced dislocation networks similar to those generated in MD.
Setting the simulation time step of 10 fs (the same as in MD), we recorded the “true”
slip facets and dislocation networks at every time step of the DDD simulation. Then, in
order to examine how well STA output approximates the “true” DDD simulation data,
we applied our STA algorithm to dislocations networks produced in DDD using several
different combinations of �t and s.
Figure 9a shows the stress-strain response obtained in the DDD simulation with the

above described parameters but over a short time interval of 5000 time steps which corre-
sponds to 0.01 increment in the axial strain (dashed red line). That both the flow stress, at
∼4 GPa, and the dislocation density, at ∼6 × 1016/m2 (not shown), are close to the ones
observed in the corresponding MD simulation confirms that the two models – DDD and
MD – are indeed similar, as intended. Also shown on the same plot as thin lines of vari-
ous colors are stress-strain curves reconstructed from STA slip facets computed from the
DDD network snapshots using different choices for �t and grid spacing s ≈ 5.3, 2.6, and
1.3 nm which correspond to N = 163, 323 and 643 grid points along each dimension of
the DDD simulation volume (see the legend). Reconstruction of these stress-strain curves
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Fig. 9 Effect of the choice of STA parameters �t and N on the accuracy of STA method when applied to a
DDD simulation trajectory. a “Exact” stress-strain response from the DDD simulation (dashed red line)
compared to stress-strain responses reconstructed from the STA facets obtained using various parameter
values for �t and N (see the legend). b Average deviation from the “exact” DDD plastic strain of plastic strain
reconstructed from the STA facets extracted using different STA parameter values

was performed as described in “Asymmetry in the stress-strain response” section. Note
that all reconstructed stress curves are close to the “exact” DDD result however, to zoom
in on remaining discrepancies, we intentionally changed the scale of the stress axis. As
seen from the curves, stress show largest divergence from the true stress response at all
values of the STA interval �t. STA facets extracted on finer grids N = 323 and N = 643

follow the true response much closer. Similar trend is obvious from Fig. 9b that shows for
the same choices of �t and N the average deviation of plastic strain computed from the
STA facets from the “exact” plastic strain computed in the DDD simulation. Here again
the coarsest grid N = 163 results in greatest average deviations. The smallest average
deviations are obtained with �t = 1 ps and grid resolutions N = 323 and 643, at 0.065%
and 0.036%, respectively.
Figure 10a presents another test on the accuracy of our STA algorithm. Shown in the

figure is the distribution over the zonal angle of the flux of 1
2 〈111〉 dislocations computed

directly in the DDD simulation (exact flux distribution) and reconstructed from the STA
facets extracted using different values of �t and N (see “Tension / compression asymme-
try in single-loop simulations” section for the definition of the zonal angle). It appears that
flux distribution is well captured at all values of �t and N, including its width reflecting
the pencil character of dislocation mobility encoded in the mobility function used in the
DDD simulations. The reconstructed STA flux distributions even reproduce the peaks in
the true distribution possibly reflecting insufficient statistics of dislocation slip accumu-
lated over the rather narrow interval of only 50 ps (= 5000 DDD time steps). Although
greater deviations from the “true” flux distribution at coarser grids are again evident,
these are more concisely summarized in Fig. 10b that shows the root mean square devi-
ations (RMSD) from the exact DDD flux of the STA flux computed for the same sets of
STA parameters. Again, STA flux computed with�t = 1 ps and grid resolutionsN = 323

and 643 shows the lowest RMSD.We note that the RMSD increases markedly when using
the longest time interval of �t = 5 ps which probably indicates excessive “warpage” of
the slip facets resulting in a loss of accuracy in capturing crystallographic slip.
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Fig. 10 a Dislocation flux as function of zonal angle (see legend and text for an explanation of colors). b Root
mean square deviation (RMSD) from the “true” DDD flux of the zonal flux computed from STA facets using
different STA parameters values

Results presented in this section demonstrate the ability of the STA algorithm to accu-
rately reconstruct dislocations trajectories from network snapshots providing guidance
for optimal selection of STA parameters for an intended application. Following the study
discussed in this section, for our STA analysis of DXA data we opted for �t = 1 ps and
N = 323 as a set of STA parameters offering a reasonable trade-off between accuracy and
cost of our DXA/STAworkflow. Finally, It is worth noting that, when applied on DDD tra-
jectories, the deviations of STA-reconstructed plastic strain from the exact DDD plastic
strain for this parameter set are well below 1%. This is to be compared to the systematic
deviation of ∼3% from the exact MD plastic strain observed with the same optimal set of
STA parameters in “Results” section. This comparison suggests that the largest fraction
of the total error of the DXA/STA workflow resides with the DXA method, likely owing
to thermal fluctuations and other uncertainties in dislocation core positioning inherent
to DXA.
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