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Abstract
The fundamental interactions between an edge dislocation and a random solid solution
are studied by analyzing dislocation line roughness profiles obtained from molecular
dynamics simulations of Fe0.70Ni0.11Cr0.19 over a range of stresses and temperatures.
These roughness profiles reveal the hallmark features of a depinning transition. Namely,
below a temperature-dependent critical stress, the dislocation line exhibits roughness
in two different length scale regimes which are divided by a so-called correlation
length. This correlation length increases with applied stress and at the critical stress
(depinning transition or yield stress) formally goes to infinity. Above the critical stress,
the line roughness profile converges to that of a random noise field. Motivated by these
results, a physical model is developed based on the notion of coherent line bowing
over all length scales below the correlation length. Above the correlation length, the
solute field prohibits such coherent line bow outs. Using this model, we identify
potential gaps in existing theories of solid solution strengthening and show that recent
observations of length-dependent dislocation mobilities can be rationalized.

Keywords: Dislocation, Solute, Roughness, Mobility, Strengthening, Depinning
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Introduction
Solid solution strengthening is one of the most fundamental strengthening mechanisms
for crystalline materials. Dating back 5000 years to the bronze age, the premise is quite
simple: mix small amounts of a secondary metal into a primary metal to form a solid
solution, known as an alloy, which is stronger than either pure metal. It wasn’t until
the discovery of dislocations in the 1940s that the mechanism underlying solid solu-
tion strengthening was understood: solute atoms impede the motion of dislocation lines.
While qualitatively simple, theoretical descriptions of solid solution strengthening that
are free of phenomenological parameters have been elusive. With the advent of mod-
ern atomistic computing techniques and advanced scientific computing platforms, it is
now possible to study solid solution strengthening at high fidelity and understand its
fundamental nature.
Classical theories for solid solution strengthening were developed by Fleischer, Friedel,

Labusch, andMott in the 1960s (Ardell; Argon 2008; Fleischer 1963; Freidel 1964; Labusch
1970; Mott 1952; Varvenne et al. 2017). These theories are now commonly referred to as
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“strong pinning” (Fleischer and Friedel) and “weak pinning” (Mott and Labusch), a dis-
tinction which refers to the nature by which the dislocation “samples the solute field” as it
glides forward (Ardell; Varvenne et al. 2017). In strong pinning, the dislocation encoun-
ters each solute individually, overcoming a single solute obstacle at a time. With weak
pinning, the dislocation line instead encounters a diffuse solute field, and each point along
the dislocation line is at all times responding to many solute interactions. In the classical
theories, this diffuse interaction is characterized by an ad hoc interaction length scale. It
has been shown that at most solute concentrations of interest for alloys (i.e., > 0.1 at.%),
weak pinning is the operative strengthening mode (Leyson and Curtin 2013).
Building on this classical work, Leyson et al. (2010) recently developed a novel weak-

pinning theory of solid solution strengthening. In their theory, a dislocation line embed-
ded in a field of solutes is assumed to form a quasi-sinusoidal geometry described by
segment length ζ and amplitude w. Values of the length scales (ζ ,w) are then chosen
such that the total energy of the dislocation is minimized, taking account of the elastic
energy of the line and the interaction energies between each segment of the line and each
solute atom. Finally, a temperature-dependent yield strength is derived using the obtained
line geometry in conjunction with thermal activation theory. The Leyson et al. theory
provides a computationally tractable formalism for predicting solute strengthening while
incorporating information from first-principles computations (density functional theory)
of dislocation-solute interactions (Leyson et al. 2010; Leyson et al. 2012). This theory
has been used to successfully predict temperature-dependent yield strengths of Al, Zn,
and high entropy alloys (Varvenne et al. 2016; Varvenne et al. 2017). The length scales
(ζ ,w) characterizing the dislocation line are the essential ingredients which enable the
development of the theory.
Going beyond the yield strength (the stress below which dislocations are immobile),

dislocation-solute interactions also critically influence the mobility of dislocation lines.
Several authors have used molecular dynamics (MD) simulations to show the influence
of solutes on the mobility curves (velocity as a function of shear stress) in face-centered
cubic (FCC) (Marian and Caro 2006; Olmsted et al. 2005; Osetsky et al. 2019; Rodary et al.
2004; Sills et al. 2020; Zhao et al. 2017) and body-centered cubic (BCC) (Itakura et al.
2013; Katzarov et al. 2017) metals. These studies show that as the solute concentration
increases, the dislocation mobility is reduced (this is not always the case for screw dislo-
cations in BCC metals, however (Katzarov et al. 2017)). Several studies have shown that
under some conditions, rather than moving smoothly in time the dislocation line occa-
sionally arrests and is completely pinned in place (Osetsky et al. 2019; Rodary et al. 2004;
Sills et al. 2020). The dislocation may then unpin and begin moving again. Recently, this
behavior was studied in detail and interpreted in terms of a length-dependent mobility;
the authors showed that by increasing the line length L a length-independent mobility
could be recovered (Sills et al. 2020). It was argued on the basis of kinetic Monte Carlo
simulations that this length-dependence is a direct result of the length scales which char-
acterize the dislocation line’s interactions with the solute field. However, a fundamental
explanation derived from the details of these interactions is still lacking.
These works demonstrate the critical importance of the dislocation line geometry

and its associated length scales in solid solution strengthening. Recently, Zhai and
Zaiser (Zhai and Zaiser 2019) studied the geometry of a dislocation line interacting
with a spatially random force field (a model for a solid solution system) using discrete
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dislocation dynamics, demonstrating the hallmark behaviors of a so-called depinning
transition (Fisher et al. 1997). They showed that the dislocation-force field interactions
induced a stress-dependent characteristic length above which the roughness in the line
geometry became uncorrelated; here, “correlations” refer to regions of the dislocation line
which bow out in a coherent manner (i.e., are pinned). They further showed that the char-
acteristic length at zero-stress (deemed the “pinning length”) scaled with the flow stress
of the system. In this work, we perform a similar study using line geometries obtained
from molecular dynamics (MD) simulations of dislocation glide in a dense solid solution.
Our goal is to assess the geometry of dislocation lines over a range of stresses and tem-
peratures in order to identify the scale parameters which govern their shape. We show
below that the trends in these parameters are intimately tied to the depinning transition,
and help to rationalize the length-dependence in the dislocation mobility. Our results
also bring into question the concept of a unique set of length scales which govern solid
solution strengthening.
The remainder of the manuscript is organized as follows. First, because of its central

role in our analysis, we give a brief review of the depinning transition of elastic mani-
folds, a concept which has been pervasively studied across many areas of physics. In the
“Methods”, we discuss our simulation and analysis techniques. In the “Results”, we present
the Hurst exponents H and correlation length scales ξ which we have extracted from the
line geometries obtained from MD. Finally, in the “Discussion” section we consider the
implications of our findings for theories of strengthening and dislocation mobility, and
discuss future areas of study.

Depinning of elastic manifolds
In this section a brief overview of the depinning transition (Fisher 1985; 1998) is given
which, as will be shown below, properly describes the evolution of a dislocation line in
the random alloy considered. The basic concept of this statistical physics approach is that
an elastic manifold (typically a line or a surface) interacts with a static pinning field that
exerts local pinning force on the manifold. External force F is applied to the manifold
which below a certain threshold force Fc cannot move at zero temperature due to the
pinning field. Whereas for F > Fc the manifold depins, that is, it overcomes the restoring
force of the pinning points and starts to move with a constant velocity v (on average). The
schematic plot of this phenomenon is shown in Fig. 1. At T = 0, the v(F) curve close to
the depinning point Fc can be usually approximated as

v(F) ∝ (F − Fc)β , (F > Fc) (1)

where the velocity exponent β > 0 is introduced. Examples of systems exhibit-
ing depinning cover a wide range of physical phenomena: domain wall migration in
ferromagnets (Zapperi et al. 1998), motion of tectonic plates (Fisher et al. 1997),
propagation of liquid fronts in porous materials (Martys et al. 1991), and the propaga-
tion of crack fronts in heterogeneous materials (Daguier et al. 1997), just to mention
a few.
The depinning takes place as a result of the competition between the restoring force

due to the elastic properties (e.g., line tension) of the manifold which act to “flatten” it
and the forces from the applied stress and pinning field which induce roughnening. This
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Fig. 1 The depinning transition. Average velocity v of the elastic manifold driven by the external force F. At
the depinning point Fc and T = 0, v starts to increase according to a power-law relationship. At finite
temperature T > 0, so-called thermal rounding leads to non-zero velocities v > 0 for F < Fc

process is, perhaps counter-intuitively, highly non-local: as the force F tends to Fc, numer-
ous small rearrangements (or avalanches) of the manifold take place and, as a result,
long range correlations build up in the shape of the manifold. Thus, the depinning tran-
sition is, in fact, a collective phenomenon and can be considered as a continuous phase
transition.
The process of approaching the depinning point can be characterized by the so-called

roughness function, which for line-like manifolds (e.g., dislocations) reads as

R(l) = 〈|y(x + l) − y(x)|〉 , (2)

where y(x) represents the shape of the manifold (see sketch of Fig. 2a), and 〈·〉 stands
for averaging with respect to x, that is, along the direction of the manifold. (The force F
drives the manifold in the +y direction.) This roughness function characterizes the aver-
age height difference of the curve at a typical distance l. In the case of a gliding dislocation
line, regions of the dislocation line bow out between dominant pinning points. As the
applied stress σ increases (giving a Peach-Koehler force F = σb where b is the magni-
tude of the Burgers vector) and tends to the depinning (or yield) stress, the dislocation
line overcomes weak pinning points and the bow out distance increases as the distance
between the dominant pinning points increases. As a result, during depinning (i.e., when
F < Fc) the roughness develops a power-law dependence as

R(l) ∝ lH , (3)

with H ≥ 0 being the Hurst exponent (Fig. 2b)1. This means that the curve becomes self-
affine with a fractal dimension D = 2 − H . Figure 3 presents examples of rough curves
with Hurst exponents H = 0, 0.5, and 1. The exponent of H = 0.5 is equivalent to a
one-dimensional Brownian motion where the increments of y(x) between subsequent x
values are independent random variables. In the case of H > 0.5 these increments are
correlated (a positive step is likely followed by another positive step) whereas H < 0.5

1This exponent is often called the roughness exponent in the depinning literature.
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Fig. 2 Roughness of a depinning line. a Rough dislocation line with shape y(x). The direction of the motion
is parallel to the y axis. Note that the pinning points are distributed randomly all over the xy plane, in the
figure only those are shown that are interacting with the dislocation line. b Roughness R(l) at the depinning
transition (F = Fc) with Hurst exponent H. Dashed lines denote the microscopic (e.g., atomic) and
macroscopic (e.g., system size) limits, where the scaling breaks down. c Roughness far from the depinning
transition (F �= Fc) with two Hurst exponents H1 and H2. d Expected behavior of the correlation length ξ in
the vicinity of the depinning transition

means anticorrelation between the steps (a positive step is likely followed by a negative
step). In particular, H = 0 corresponds to random (white) noise2.

2The distinction between H = 0 and H = 0.5 is subtle. The roughness in both cases can be thought of as random. For
example, imagine that we construct a line connecting a set of points on a grid (xi, yi) which are equally spaced in x. The
position yi for each point is chosen at random. However, the two cases differ in how the line is constructed. In the case of
H = 0, each yi is chosen randomly in the interval

[
ymin, ymax

]
. The result is that the roughness of the line is

anti-correlated, because a point on the line with yi at (or near) ymax, for example, is most likely to be followed by a point
yi+1 < ymax. Hence, an increase in y position is likely followed by a decrease in y position, the definition of
anti-correlation. In the case of H = 0.5, the value for yi+1 follows a random walk process with yi+1 = yi + �y, where �y
is chosen randomly in the range

[
�ymin,�ymax

]
. In this case the increment in y position is chosen randomly, rather than

the y position itself. This leads to uncorrelated roughness.
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Fig. 3 Example line geometries with different Hurst exponents. The curves represent examples of fractional
Brownian motion, where correlations or anti-correlations are introduced between subsequent increments
(Kroese and Botev 2015). The Hurst exponent H can be set in the model and H = 0.5 corresponds to classical
Brownian motion. a H = 0, b H = 0.5, c H = 1. Each circular subplot magnifies the content of a small grid cell

As the external force F increases and tends to the depinning threshold Fc, the form of
Eq. (3) is gradually approached. In particular, this scaling behavior is only obeyed when l
is below a correlation length ξ . In the classical picture of depinning the correlation length
is expected to diverge at the critical force Fc as seen in Fig. 2d (Fisher et al. 1997). An
exponent ν > 0 characterizing this divergence is introduced as

ξ ∝ |F − Fc|−ν . (4)

This means that truly self-affine behavior (or, in other words, scale-free roughness) is only
observed at the depinning point. At smaller and larger forces the length-scale ξ appears,
which usually separates two distinct regimes on the roughness plot each characterized by
an individual Hurst exponent. Below the correlation length ξ , the curve is self-affine with
a roughness exponentH1 characteristic to the depinning transition. Above this scale ther-
mal fluctuations and the local interaction between the pinning points and the manifold
may introduce roughness with a different exponent H2. It is noted, that the power-law
dependence of the roughness R cannot extend to all scales as there are physical barriers
that pose a strict limit, such as the lattice constant and the size of the medium that the
elastic manifold is embedded in, denoted by lmin and lmax, respectively, in Fig. 2.
At T > 0 the so-called thermal rounding is observed; that is, the v(F) curve gets smooth

close to the pinning point as shown in Fig. 1. Below the depinning point, thermal creep is
observed, i.e., v > 0, which has been extensively studied both theoretically (Chauve et al.
2000; Purrello et al. 2017) and experimentally (Bustingorry et al. 2012) for domain wall
dynamics in ferromagnets.
In the context of dislocations, roughening due to pinning obstacles has been observed

and studied quantitatively using discrete dislocation dynamics (DDD) simulations. In
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these models the motion of individual dislocation lines is tracked and the embedding
medium is assumed to be an isotropically elastic continuum (Bulatov and Cai 2006).
Zapperi and Zaiser constructed a lattice model to consider the gliding of a dislocation in
a random field of forest dislocations (Zapperi and Zaiser 2001). To model the effect of
irradiation Hiratani and Zbib introduced stacking fault tetrahedra in copper that acted
as barriers for dislocation motion (Hiratani and Zbib 2003). Bakó et al. investigated the
hardening effect of ceramic dispersoids in steel by introducing impenetrable spherical
obstacles in the slip plane of a single gliding dislocation (Bakó et al. 2008). Patinet et al.
(2011) analyzed edge dislocation depinning with molecular dynamics simulations of a
random Ni0.9Al0.1 alloy. They analyzed both the line roughness and the avalanche statis-
tics associated with glide motion. Finally, Zhai and Zaiser introduced a random pinning
field that acted on the dislocation line to account for the random distortion field of high
entropy alloys (Zhai and Zaiser 2019). In all of these simulations scale-free roughness was
found to develop as the yield stress was approached with Hurst (or roughness) exponents
of 1.0 (Zapperi and Zaiser 2001), 0.8 − 0.85(Hiratani and Zbib 2003), 0.96 (Bakó et al.
2008), 0.85 (Patinet et al. 2011), and 1.0 (Zhai and Zaiser 2019), respectively. The effect
of thermal noise in the absence of solutes was also studied by Zhai and Zaiser by adding
Langevin forces that act on the dislocation lines (Zhai and Zaiser 2019). It was found
both theoretically and numerically that such thermal noise leads to a Hurst exponent of
H = 0.5. This was also found in MD simulations of dislocation fluctuations in pure Al
(when l > 10Å) (Geslin and Rodney 2018).
The concept of depinning has also been introduced more generally for dislocation

ensembles (Friedman et al. 2012; Tsekenis et al. 2013; Zaiser 2006). It was found, however,
with 2D and 3DDDD simulations that dislocation ensembles without a static pinning field
do not undergo depinning, but instead belong to a different class of systems exhibiting
scale-free fluctuations (Ispánovity et al. 2014; Lehtinen et al. 2016). It is important to note
that in this paper depinning of a single dislocation line is considered, and that this situa-
tion is conceptually not related to that of the dynamics of complex interacting dislocation
ensembles.

Methods
Molecular dynamics simulations

We simulated glide of edge dislocations in random Fe0.70Ni0.11Cr0.19 alloys, similar
in composition to 300-series stainless steels, using molecular dynamics with methods
identical to those of (Sills et al. 2020). An FCC lattice was utilized (i.e., we simulated
austenitic stainless steel) with the Zhou et al. embedded atom method potential (Zhou
et al. 2018). For the purposes of this study, the chosen alloy system is a model ternary
random solid solution. A free standing film geometry was used with periodic bound-
ary conditions in the x and y directions and free surface boundary conditions in the
z direction. The orthogonal box was oriented with

[
1̄ 1̄ 2

]
in the x direction,

[
1 1̄ 0

]
in

the y direction, and [ 1 1 1] in the z direction. The respective dimensions of the sys-
tem were Lx = 3748Å, Ly = 152Å, and Lz = 75Å. The dislocation glide plane
was centered in the film with its normal in the z direction. A single edge dislocation
with line direction

[
1̄ 1̄ 2

]
was inserted by removing a sheet of atoms in the

(
1 1̄ 0

)

plane with thickness b = √
2a/2, where a is the lattice parameter, and then relax-

ing the system. A time step size of 0.004 ps was used. Shear stress was applied to
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the system by applying opposing forces on the free surface atoms at the top and bottom of
the film.
To analyze the line roughness, the dislocation extraction algorithm (DXA) (Stukowski

and Albe 2010) was utilized to extract dislocation line profiles using OVITO (Stukowski
2010). Given that the dislocations in FCC metals disassociate into a pair of Shockley
partial dislocations, line extraction via DXA produced two partial dislocation line pro-
files for every simulation snapshot which were analyzed independently (i.e., every MD
snapshot produced two line profiles). Part of DXA is a line coarsening and smoothing
step, which removes roughness in the dislocation line resulting from the lattice trian-
gulation that is employed by the method. Given that our primary focus here is on the
roughness of the lines, there is a concern that the smoothing algorithm in DXA may
introduce artifacts into the line geometries. In Appendix A, we discuss the possible influ-
ence of smoothing on our results and findings. For all results presented in the body of
the manuscript, we used the default coarsening and smoothing parameters in OVITO
(line_point_separation = 2.5, line_smoothing_level = 1). Based on the
consistent trends and limiting behaviors of our Hurst exponents and correlation lengths,
we do not believe that line smoothing affects any of our major findings.
When computing the dislocation velocity, the mean glide distance traveled by the dis-

location, d, was computed as d = �yLy/b, where �y is the mean atomic displacement
in the y direction of atoms above the glide plane relative to atoms below the glide plane.
The velocity was then obtained from the slope of the d versus simulation time data. For
simulations where complete pinning was not observed (i.e., the dislocationmoved contin-
uously in time), each simulation had a duration of 8 ns and one simulation was analyzed
at each condition (stress and temperature) using line configurations extracted at 0.16 ns
intervals (see below). For simulations where complete pinning was observed (i.e., the dis-
location became completely arrested), each simulation had a duration of 0.4 ns—which
was sufficient to ensure that the dislocation reached a completely pinned state—and 10
different random alloys were used at each condition; only the final completely pinned
configurations were analyzed.

Determination of steady state

As it was mentioned in the previous section, in the beginning of the simulations the dislo-
cation was straight. In the field of the random pinning forces exerted by the solute atoms,
this shape is highly unstable. As a result the line roughens until it reaches a steady state
which is either pinned for low external load or mobile for larger loads. In order to deter-
mine the steady state roughness (which is the focus here) the initial relaxation transient
needs to be eliminated. Specifically, we must determine the time tss at which the sys-
tem reaches its steady state velocity vss (and we assume that the line roughness has also
reached steady state). To this end, the following procedure was implemented. First the
velocity v of the dislocation was computed at time t, see Fig. 4 for a representative exam-
ple. Then the test function f (t) = a0t + v0 was fitted to the domain [t0, tend], where t0
is an arbitrary time point and tend is the duration of the simulation. The value of t0 was
gradually increased from t0 = 0 until the value of the acceleration a0 dropped below
a pre-defined threshold (being 8 × 10−6 Å/ps2 or smaller). After this fit is performed,
we take tss = t0 and vss = v0. The outcome of the method is demonstrated in Fig. 4.
The steady state is, thus, defined based solely on the velocity of the dislocation. It was
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Fig. 4 Determination of the steady state velocity of the dislocation line. A representative example of the
dislocation velocity (v) as a function of time (t) at T = 200 K and σ = 65 MPa. The initially straight dislocation
becomes rough in the initial transient regime and reaches a steady state at time tss. From that time the
average steady state velocity vss remains constant

checked, however, that parameters describing the roughness (correlation length and
Hurst exponents) also reached a steady value after tss.

Roughness analysis

In order to describe the shape of dislocation lines, the roughness function R(l) of Eq. (2)
was determined for dislocation profiles extracted by DXA. Figure 5 shows the R(l) func-
tions for T = 5 K at different applied load levels. As expected (see Eq. (3)), the plots
clearly exhibit a power law regime with Hurst exponent H1 up to a length scale (corre-
lation length) above which a different power law with Hurst exponent H2 is obeyed. The
correlation length as well as the power law exponents increase as the stress is increased.
Figure 5 also shows that in some cases (near the depinning transition) the line rough-
ness exceeds the simulation cell width in the glide direction (152 Å). In these cases, our
results may be influenced by the simulation cell size. We believe that our overall trends
and findings are insensitive to the cell size, however.
Several methods have been formulated to extract the Hurst exponents and the corre-

lation length from data describing a rough surface (Krakovská and Krakovská 2016). In
this paper we utilize the Higuchi method (Higuchi 1988) which is a very efficient method
to calculate the fractal dimension (and, thus, the Hurst exponent) of data series (Liehr
and Massopust 2020). In addition, an outstanding property of the method is that it is
particularly suited for problems with two scaling regimes characterized by two different
Hurst exponents. These properties explain its widespread usage within different fields of
science (Ahammer 2011; Al-Nuaimi et al. 2018; Gálvez-Coyt et al. 2012; Gomolka et al.
2018; Wajnsztejn et al. 2016). In the following the concepts of this method are briefly
introduced.
To apply the Higuchi method, an ordered data series is needed where the datapoints

follow each other in equidistant steps as a function of, e.g., time or, as in our case, distance
along the x axis. The notation yi = y(ih) is introduced, where h denotes the spacing
between neighboring data points in the x direction and 1 ≤ i ≤ N with N being the
total number of data points. DXA does not output dislocation line geometries with a
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Fig. 5 Roughness of the dislocation lines at T = 5 K and various stress levels below the depinning transition.
Roughness develops a power law dependence up to the correlation length ξ (denoted by dots) characterized
by the Hurst exponent H1, which gives the slope of the curve. Upon increasing stress the Hurst exponent H1,
as well as the correlation length, increases. Above the correlation length, a different exponent H2 is obeyed.
Dashed lines show values of H1 and H2 and dots show values of ξ , all three obtained by the Higuchi method

uniform nodal spacing, however, so we re-sampled (interpolated) the DXA output with a
grid spacing of h ≈ 5 Å (defined h based on the first line segment on the line).
The basic idea of the method is to re-sample the data yi with different grid spacings kh,

where k > 0 is an integer, and then compute the roughness at the grid spacing, i.e., with
l = kh. The re-sampling procedure is shown in Fig. 6. k is like a “zoom” factor which
selects the scale at which the data is analyzed. The starting data point for the re-sampling
is denoted by the integerm, with 0 ≤ m < k. In the Higuchi method, the following scaled
roughness function is then computed for each value of k andm:

Lk(m) = N − 1
k2

⎛

⎜
⎝

1
[N−m

k
]

[N−m
k

]
∑

i=1

∣∣ym+ik − ym+(i−1)k
∣∣

⎞

⎟
⎠ . (5)

Note that since (N − m)/k is the number of data points in the re-sampled dataset, the
quantity in parentheses is similar to the average roughness when l = kh. For every mag-
nification level k, these Lk(m) lengths are then averaged for every m as Lk = 〈Lk(m)〉.
Averaging over allm values ensures that all data points are re-sampled equally. If the line
is a fractal with dimension D, it is observed that Lk ∝ k−D. Therefore, on the so-called
Higuchi plot, where Lk is plotted as a function of k−1 on double logarithmic axes, the slope
corresponds to the fractal dimension D. The Hurst exponent then follows asH = 2−D3.
If there are two scaling regimes separated by a correlation length, then a crossover

appears at a certain k−1
s value, as seen in Fig. 7 (see below for how ks is obtained). In all

cases studied in this paper we indeed observed two scaling regimes on the Higuchi plots,
so, we developed an automated fitting procedure in order to obtain the Hurst exponents
and the correlation lengths without any systematic biases that could be introduced by
manual fitting. In the following this method is briefly introduced.
Given the finite periodic length of the dislocation line set by the box length Lx = 3748Å,

re-sampling could not be accomplished for arbitrarily large values of k. In practice we set

3Accordingly, note that Lkk2 ∝ kH .
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Fig. 6 Re-sampling in the Higuchi method. The data on an equidistant grid, shown as brown dots, are
re-sampled in order to obtain Lk(m). The green dots mark the re-sampled datapoints ym+ik used for the
evaluation for a given k andm. The orange square symbolises the first datapoint in the re-sampled set

kmaxh = 1250Å as an upper limit, which gives kmax = 250. On the lower end kmin = 1
was chosen, which corresponds to all data points being used.
First, we split the domain of the Higuchi plot into two parts by introducing the variable

ks. Fractal dimensions D1 and D2 were then obtained via linear regressions in log-log
space to the data in the range [1/kmax, 1/ks] and [1/ks, 1/kmin], respectively, yielding a pair
of lines in log-log space defined by the form A(1/k)D. To estimate the quality of the fit for
that particular ks value, the score function

S(ks) = 1
log (kmax/ks)

log(1/ks)∫

log(1/kmax)

[
log(Lk) − log(A1k−D1)

]2 d
[
log

(
1
k

)]

+ 1
log (ks/kmin)

log(1/kmin)∫

log(1/ks)

[
log(Lk) − log

(
A2k−D2

)]2 d
[
log

(
1
k

)]
(6)

was introduced which measures the squared distance between the original data and the
fit functions on the log-log plot normalized with the extension of the two regimes. The
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Fig. 7 Higuchi method applied at T = 5 K and σ = 0 MPa. Total scaled roughness Lk as a function of inverse
magnification 1

k (heavy blue line). Two power laws are fitted to the small (orange) and to the large (green)
length scales separated by the optimal ks (marked with a dashed vertical black line). The correlation length ξ

is determined from the intersection point of the two power law fits (marked with a dashed vertical red line)
and the Hurst exponents H1 and H2 from the corresponding slopes. The inset shows the fit score function
S (ks) as a function of 1

ks
. The red dot marks the minimum value that yields the optimal ks

optimal value of ks was determined from the global minimum of the score function eval-
uated numerically as seen in the inset of Fig. 7. Given the curvature in the roughness
data near ks, the intersection of the two fitted power laws is not necessarily at 1/ks (as in
the example of Fig. 7). The correlation length ξ was, therefore, computed from the inter-
section point of the power law fits rather than ks. As seen in Fig. 5 the Hurst exponents
obtained from the Higuchi method, shown as dashed lines, are fully compatible with the
roughness plots, as expected.

Results
Depinning of dislocation lines

In order to determine the depinning threshold of dislocations (i.e., the critical or yield
stress), the steady state velocity vss was determined as a function of the applied stress σ .
According to Fig. 8, the observed behavior is analogous to a depinning transition: dislo-
cations are pinned below a critical stress σc and move continuously above. In the mobile
regime (i.e., when vss > 0), we fit a function of the form C (σ − σc)

β using nonlinear least
squares regression with fitting constants C, σc, and β to obtain estimates for the critical
stress σc and the velocity exponent β . Values for these parameters are shown in the legend
of Fig. 8. We find that β ≈ 0.73, close to the value of β = 0.62 obtained from discrete dis-
location dynamics simulations of impenetrable precipitates (Bakó et al. 2008). Thermal
rounding is also observed in the gradual decrease of σc as the temperature increases from
5 K to 200 K. At these temperatures, however, thermal creep was not observed below σc.
Considerable thermal creep was observed at higher temperatures in our prior work (Sills
et al. 2020). For reference, we observed complete pinning (vss = 0) under the following
conditions: T = 5 K and σ = 0, 25, 50, 75, 95 MPa; T = 100 K and σ = 0, 25, 50,
75 MPa; and T = 200 K and σ = 0, 25, 50 MPa. Since we are working with a limited
dataset confined into a small finite box size, the actual depinning stress is of statistical
nature since pinning effects do not average out on a large ensemble and require an infi-
nite system size to accurately resolve. This explains why we observe complete pinning at
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Fig. 8 Steady state dislocation velocity vss as a function of temperature T and external stress σ . The data
obtained from the MD simulations were fitted with the form of Eq. (1) yielding parameter values shown in the
figure legend

T = 5 K and σ = 95 MPa despite the fact that this stress is above the depinning stress
of σc = 89 MPa obtained from the fit in Fig. 8. This difference could be further reduced
with more data. We believe that this is an artifact of the finite box size since the correla-
tion length ξ becomes very large near the depinning transition (see next section). Finally,
we note that while some previous work on AlMg alloys up to 5 at.% Mg has shown that
dislocation velocities scale as σ/T at temperatures above 300 K (Olmsted et al. 2005), our
data do not follow this trend, likely because our solute concentration is higher (30 at.%)
and our temperatures are lower.

Roughness of dislocation lines

As the stress increases the shape of the dislocation lines gradually changes. Example snap-
shots can be seen in Fig. 9 where representative dislocation lines are shown at T = 5K.
Close to depinning (σ = 97.5 MPa) the morphology changes dramatically, with the dis-
location bowing out significantly in the y direction over large length scales. In contrast,
away from the depinning transition (σ = 0, σ = 200 MPa) the line remains essentially
straight over large length scales. Furthermore, at small scales, shown in insets, fluctu-
ations at short wavelengths (i.e., small l values) seem more pronounced away from the
depinning transition.
These observations can be quantified using the Higuchi method introduced above.

According to the analysis, two scaling regimes can be observed which are characterized
by Hurst exponents H1 and H2 and separated by the correlation length ξ . Figure 10 sum-
marises the values obtained by the automated fitting procedure; the results contained in
Fig. 10 are the principal contribution of this work.
The behavior of the correlation length ξ is typical to that of a depinning transition: it

increases as σc is approached from below and decreases above. At σc the divergence pre-
dicted by Eq. (4) is not observed since in this region ξ becomes comparable to the system
size Lx = 3748Å. Therefore, larger simulation volumes would be required to determine
the value of the exponent ν. The effect of temperature on ξ , apart from the shift in the
depinning threshold discussed above, is weak; due to thermal noise, correlation lengths
are slightly larger at higher temperatures when σ < 75 MPa (far from the depinning
transition).
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Fig. 9 Dislocation line geometries at T = 5 K and different stress levels. Three exemplary dislocation lines for
each case as extracted by DXA (shifted so that their average y coordinate was set to zero). The magnified
parts are 500 Å wide and 80 Å high

The Hurst exponents H1 and H2 below and above the correlation length, respectively,
show a clear trend that is again only weakly affected by increasing temperature. Namely,
in the pinned state the small scale exponentH1 increases fromH1 ≈ 0.7 at σ = 0 towards
H1 ≈ 1.0 at σ = σc whereas the large scale exponent is significantly smaller, typically 0 ≤
H2 ≤ 0.4. This means that at small stresses the roughness at small length scales is almost
random due to thermal noise with H1 ≈ 0.5 (even at T = 5K) (Geslin and Rodney 2018;
Zhai and Zaiser 2019) andwith increasing stress its shape gradually approaches that found
for quenched disorder with H1 ≈ 1 (Bakó et al. 2008; Hiratani and Zbib 2003; Patinet
et al. 2011; Zhai and Zaiser 2019; Zapperi and Zaiser 2001). Such gradually changing
exponents are not commonly observed in depinning transitions and the possible reason
and implications will be discussed in the “Discussion” section below.
Above the depinning threshold the correlation length ξ quickly drops below 100 Å and

becomes comparable to the dislocation core radius (separation distance between the par-
tial dislocations). Above this scale (i.e., l > ξ ) the dislocation line develops scale-free
roughness with Hurst exponent H2 ≈ 0.5. This is equivalent to the case of thermal noise
(Geslin and Rodney 2018; Zhai and Zaiser 2019).

Discussion
We begin the discussion by formulating a qualitative picture that explains the trends
observed above, obtaining a description of the depinning process that is very similar to
that of (Patinet et al. 2011). First, we focus on the behavior prior to the depinning transi-
tion (σ < σc). Consider a periodic dislocation line of length L under applied shear stress
σ and temperature T. At every position along the dislocation, the line may glide forward
under the applied stress. Since the solid solution contains many pinning points (solute
atoms), the line will tend to locally bow out between a set of “dominant” pinning points.
We refer to the distance between these dominant pinning points as the bowing length, lb,
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Fig. 10 Hurst exponents and correlation lengths of the dislocation lines for various temperatures T and
external stress levels σ . (Left) Hurst exponents H1 and H2 determined with the Higuchi method as a function
of the applied stress σ . H1 corresponds to small k (and l) values and H2 corresponds to large k (and l) values.
(Right) Correlation length values ξ at which the Hurst exponent changes from H1 to H2 as a function of σ .
The purple region shows the stress range within which the depinning transition is expected based on our
simulation data. The vertical black dotted lines show the critical stress σc according to Fig. 8. The gray area
shows where the smoothing of the DXA algorithm could alter the result

and the distance that the line bows out as the bowing amplitude. For dilute solid solutions
(strong pinning), this interpretation is exact since solutes are encountered one-by-one.
With a dense solid solution (weak pinning) as analyzed here, the story ismore complicated
given that the solutes interact with the dislocation line over the entire bowing length.
None-the-less, we believe that the basic picture still holds in both cases.
At every point along the line, the roughness is controlled by the balance between the line

tension which acts to straighten the line, the applied stress which acts to bow out the line,
and the solute forces which act to induce a random (but correlated) line geometry. When
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the bowing length is small the dislocation line interacts with relatively few solutes, making
it easier for the line to bow out coherently since the probability of encountering a “strong”
interaction is lower. As a result, the line is able to bow out at small bowing lengths, which
is the source of the roughness. This roughness (bowing amplitude) increases with bowing
length, as predicted by Eq. (3), because the line is able to bow out more when the bowing
length is longer. This gives rise to correlated roughness with 0.5 < H1 < 1. As the bow-
ing length lb increases, the probability of encountering a “strong” interaction increases,
making it increasingly difficult for coherent bow outs of length lb to form; the strong
interactions “break up” long bowing lengths. Eventually, it becomes nearly impossible for
such bow outs to form, causing the line roughness to become uncorrelated (or even anti-
correlated) beyond a certain bowing length with 0 < H2 < 0.5. This is precisely what the
correlation length ξ represents: 2ξ is the maximum length scale at which coherent bow
outs can form (the factor of two accounts for the fact that roughness is measured in the
middle of a bow out). A bow out with a bowing length above 2ξ is broken into smaller
bowing lengths by the solute field.When σ = σc, the stress is high enough that the applied
stress is able to overcome the solute pinning forces at all length scales, causing ξ → ∞.
Hence, bow outs at any length scale are able to form at the depinning transition.
At finite temperature the picture becomes complicated by the fact that the pinning

induced by solutes is no longer deterministic, since the line may overcome a set of solute
obstacles with the aid of random thermal fluctuations: motion of the dislocation line
becomes thermally activated. None-the-less, the basic picture still holds, as our data show.
The correlation lengths ξ andHurst exponentsH1 andH2 follow identical trends atT = 5,
100, and 200 K, albeit with noisier data at higher temperatures. Interestingly, the varia-
tion of ξ with stress is shown to be temperature-dependent. For example, at σ = 50 MPa
we find that ξ = 327, 363, and 439 Å when T = 5, 100, and 200 K, respectively. This
indicates that as temperature is increased, larger bow outs are able to form since thermal
activation “reduces” the pinning strength of the solutes.
The influence of finite temperature also explains the trends we observe in H1 and H2.

Recently, the work of (Zhai and Zaiser 2019) showed how, prior to the depinning tran-
sition, the Hurst exponents behaves in two limits. In the absence of solutes at finite
temperature, random thermal noise leads to Hurst exponents H1 = H2 = 0.5. Geslin and
Rodney obtained the same result by analyzing line geometries from MD simulations of
pure Al (Geslin and Rodney 2018). At the other limit, a dislocation interacts with a solute
field at T = 0 K giving Hurst exponents ofH1 = 1 andH2 = 0. Our results correspond to
a mixture of these two limits, since we consider a solid solution system at finite temper-
ature. Hence, prior to the depinning transition we should expect that 0.5 < H1 < 1 and
0 < H2 < 0.5, which is exactly what is observed in Fig. 10. At low stresses, where ther-
mal noise strongly influences the roughness, H1 ≈ 0.7. As the stress increases, so does
H1 since the thermal noise is washed out by the sampling of the solute field; the disloca-
tion line is able to find stronger and stronger pinning sites which overwhelm the random
thermal forces. Finally at the depinning transition we find that H1 ≈ 0.9.
After the depinning transition (σ > σc), the behavior simplifies a bit because the

solutes simply introduce another random noise field which the dislocation samples (as is
observed during domainwall migration in ferromagnetics (Bustingorry et al. 2010; Duem-
mer and Krauth 2005)). Accordingly, we observe that both H1 and H2 tend to 0.5 when
σ > σc. Furthermore, we observe that ξ → 0 above the depinning transition, which is also
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consistent with uncorrelated roughness; the line geometry converges to an uncorrelated
fractal.

Comparisons with solid solution strengthening theories

As mentioned in the Introduction, most theories for solid solution strengthening are
formulated on the basis of length scales which govern the dislocation’s interaction with
the solute field. Dating back to the variational analysis of Mott (Ardell; Mott 1952) and
more recently formulated by Argon (2008), an ad hoc interaction range ω is commonly
defined, beyond which the dislocation-solute interaction is assumed to go to zero. Using
this approximation in conjunction with the statistics of random point distributions, esti-
mates are obtained for the mean bowing length at zero applied stress, l̄b0. For example,
Mott obtained that (Mott 1952)

l̄b0 =
(
2	L4s
Fsω

)1/3
(7)

where 	 is the dislocation line tension, Fs is the strength of the solutes, and Ls is the mean
solute spacing in the glide plane. Argon obtained a similar result (Argon 2008). The flow
stress is then directly related to the mean bowing length l̄b0 via a force balance or thermal
activation analysis (Ardell; Argon 2008). Determination of the mean bowing length at
zero-stress l̄b0 is thus a critical feature of these classical models.
More recently, the model of Leyson et al. (2010) advanced theoretical understanding of

solid solution strengthening by taking an atomistic view of the problem of determining
l̄b0. In their theory, the total energy of the dislocation line is estimated by accounting
for the line energy and the interaction energy with the solute field. The mean bowing
length and bowing amplitude is then obtained by minimizing the total energy (similar
to Mott’s analysis) at zero applied stress. Again, once these length scales are determined
strengthening due to solutes can be computed. A major benefit of Leyson et al.’s theory
is that there is no need to assume an ad hoc interaction length scale ω; instead, solute
interactions at all scales are rigorously incorporated.
The common feature among all of these theories is that strengthening is governed by

the mean bowing length at zero-stress l̄b0. As even the earliest theories acknowledged,
however, the process of a dislocation line sampling the solute field is statistical leading to
a distribution of bowing lengths. Our results bolster this notion, showing that many bow-
ing length scales operate simultaneously. In fact, all bowing length scales below 2ξ are
operative. This observation brings into question the geometric assumptions of previous
solid solution strengthening theories. For example, in Leyson et al.’s theory it is assumed
that the line adopts a quasi-sinusoidal profile characterized by a single bowing length. Our
results indicate that this picture simply isn’t realistic: the line is characterized by many
bowing lengths, none of which are clearly dominant, To help demonstrate this point, we
plot the average (over all relevant DXA snapshots) power spectral density of the disloca-
tion line at T = 5 K and σ = 0, 50, 75, and 97.5MPa in Fig. 11. If a single bowing length lb
were dominant, we would expect to see a peak in the power spectral density at q = 2π/lb
(q is the wavevector). Clearly no such peak exists. In a subsequent analysis, Leyson and
Curtin (2016) considered the possibility of bowing at multiple length scales, concluding
that at high temperatures a second bowing length scale becomes active. Again, this find-
ing seems inconsistent with our results. None-the-less, it may be the case that the mean
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Fig. 11 Power spectral density at T = 5 K, below the depinning stress. As the stress tends towards the
depinning stress only the small-q (large wavelength) part changes, corresponding to an increase of the
correlation length (i.e., to the appearance of larger bow-outs)

bowing length l̄b0 does govern strengthening, so that these observations are inconsequen-
tial. It is unclear whether the specific form of the bowing length distribution affects solid
solution strengthening or the mobility of dislocations in solid solutions. Future research
should be focused on assessing the bowing length distribution and its influence in more
detail, for example using the theoretical framework outlined below.
An additional point to raise is that since ξ increases with stress below the depinning

transition, we expect that the mean bowing length will also increase with stress. Hence,
it is not obvious that the mean bowing length at zero-stress—as is the focus of the theo-
ries mentioned above—is the relevant length scale which dictates a dislocation’s response
under non-zero stresses. Somewhat troublingly, we note that at the depinning transition,
i.e., the yield stress, there is no mean bowing length because ξ → ∞ so that all bowing
length scales are operable. At this point it is unclear how consequential this fact is with
respect to existing solid solution strengthening theories.

Amobility model close to depinning

We can use the above interpretation of the dislocation interaction with the solute field to
develop a mobility model. This mobility model is valid close to the depinning transition,
where the dislocation interacts with the solute field in a thermally activatedmanner which
leads to creep-style motion. Our goal in formulating this model is to clarify the funda-
mental physics at play and how they influence the overall mobility of the dislocation line.
We also seek to better understand previous observations of length-dependent mobilities
at low stresses and temperatures (Osetsky et al. 2019; Sills et al. 2020). We emphasize that
while the mobility model which we develop below is physically motivated by our data, it
is somewhat speculative in nature and is intended to demonstrate new concepts inspired
by our MD data while motivating future work in this area. In contrast to previous mobil-
ity models where the mean bowing length is the focus and to statistical physics theories
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that are based on phenomenological arguments and seek for scaling laws between differ-
ent exponents, we instead seek a more comprehensive picture where all relevant bowing
lengths are considered.
We wish to answer the following question: for a given stress σ , temperature T, and local

solute distribution
{
xsi

}
(where xsi is the coordinate of solute i with species s and brack-

ets denote the set of all solute atoms), what is the mobility of the dislocation line at a
point x? The analysis above indicates that line segments of length lb < 2ξ are able to bow
out coherently. When T = 0 a distribution of bow outs forms and then remains pinned
if σ < σc in a final state of equilibrium; that is, below the critical stress the mobility is
zero. Slightly above the threshold σc the motion of the dislocation line is intermittent and
comprised of sudden jumps between consecutive metastable states, while being mostly
quiescent between the jumps. When T > 0, however, it becomes possible for a bow
out to overcome its local solute environment via thermal activation and begin gliding in
avalanche-style motion even for σ < σc (Patinet et al. 2011). Hence, determining the
mobility of the dislocation line is akin to determining the release rate for a given bowing
length lb at stress σ and temperature T. This view is consistent with experimental obser-
vations of domain wall migration in ferromagnetic materials (Durin and Zapperi 2000;
Grassi et al. 2018) and previous MD simulations of dislocation motion in a random alloy
(Patinet et al. 2011).
We can put these statements into precisemathematical terms as follows. First, we define

a bowing density of states for the dislocation line, nb(lb), such that nb(lb)dlb is the number
of line segments with bowing length lb per unit length of dislocation line. Next we invoke
a stress, temperature, and bowing-length-dependent waiting duration t̄w (lb, σ ,T), which
is the average time that a segment of length lb is pinned before being released by thermal
fluctuations. Clearly, t̄w is infinite at T = 0 and for σ < σc, and finite otherwise. Finally, to
combine these ingredients into a mobility model which describes the dislocation velocity,
we must more precisely define what is meant by velocity. The “true” dislocation velocity
is of course well-defined as the speed at which the line moves locally at every point along
its length. In the picture of solute interactions here, the local velocity varies rapidly along
the line and in time. Hence, it is not a tremendously useful quantity from the standpoint
of understanding plasticity. Instead, we are often interested in an average velocity over
some length scale. For example, in discrete dislocation dynamics velocities are computed
for line segments of finite length (Sills et al. 2016). Wemust, then, clarify a coarse-grained
velocity definition to specify how the averaging is accomplished. One option is to coarse-
grain in terms of the area sweep rate of the dislocation line, Ȧ, since the plastic strain
rate is proportional to Ȧ (Argon 2008). Using this approach, we can employ the Orowan
equation to define the average line velocity as

v̄ = Ȧ
L

(8)

where L is the length of the dislocation line. Hence, in this definition the average velocity
is the area sweep rate per unit length of the dislocation line. The area sweep rate for the
dislocation line described by density of states nb(lb) can be stated as

Ȧ = L
∫ 2ξ

lmin

(
�A(lb, σ ,T)

t̄w(lb, σ ,T)

)

nb(lb)dlb (9)
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where �A(lb, σ ,T) is the mean increment of swept area that results from release of a
segment of bowing length lb at stress σ and temperature T. �A(lb, σ ,T) can be thought
of as the average avalanche magnitude associated with depinning of a bowing segment of
length lb. This integral is simply a sum over the swept area contributions from all bowing
lengths. The upper limit of integration 2ξ is the length above which bow outs cannot
form. The lower limit is a minimum segment length set by the discreteness of the crystal
lattice (lmin ∼ b) 4. Combining Eqs. (8-9) leads to the following mobility model:

v̄ =
∫ 2ξ

lmin

(
�A(lb, σ ,T)

t̄w(lb, σ ,T)

)

nb(lb)dlb. (10)

Equation (10) shows how the dislocation velocity is governed by three fundamental quan-
tities which characterize the dislocation’s interaction with the solute field: the mean
waiting time t̄w, the mean swept area increment �A, and the bowing density of states
nb(lb). Our conclusion is that in order to establish a physics-based mobility model, all
three of these quantities must be characterized. Further work is necessary, however, to
demonstrate that our proposed constitutive quantities—t̄w, �A, and nb(lb)—are well
defined and computable atomistic or discrete dislocation modeling techniques.
In principle, Eq. (10) provides a route for constructing mobility laws derived from basic

theoretical concepts. Our results above give some clues as to what the constitutive func-
tions for t̄w,�A, and nb(lb)may look like. For example, one possibility is that�A ∝ lH1+1

b ,
since the amount of swept area should scale with the product of the bowing length and the
roughness (bowing amplitude) of the bow out (Patinet et al. 2011). Unfortunately, these
constitutive functions are likely to depend on bowing length, stress, temperature, and the
solute distribution in a complex manner. Patinet et al. (2011) demonstrated one possible
technique for obtaining these parameters, considering the avalanche magnitude (swept
area) and duration (waiting time) statistics associated with dislocation motion in a ran-
dom alloy. Hence, in order to make the mobility model Eq. (10) useful, additional research
is necessary on the fundamentals of dislocation avalanche statistics in solid solutions.
None-the-less, the analysis above gives an explicit account of what governs dislocation
mobility in the creep regime.

Interpretation of length-dependent mobilities

Several recent works have shown using MD simulations that the dislocation mobility in
solid solutions is length-dependent if the periodic line length is too small (Osetsky et al.
2019; Sills et al. 2020). In this length-dependent regime, the line is seen to occasion-
ally become completely pinned during a simulation. In contrast, a longer dislocation line
moves continuously in time. Sills et al. (2020) showed that at a given stress and tempera-
ture, a minimum line length could be identified above which the dislocation mobility was
length-independent. They further showed that this minimum line length decreased with

4Equation (9) has an interesting analogy to models of specific heat in solids (Ketterson 2016). In the famous Debye
model, the specific heat is determined by summing over contributions from all active phonons. The phonon spectrum is
characterized by a density of states, just like the bowing length here, giving rise to an integral of the same form as Eq. (9).
The upper limit of the integral is the Debye temperature, given by the lowest frequency phonon that is operable in the
same way the 2ξ is the largest operable bowing length here. The lower limit is set by the discreteness of the lattice.
Finally, we note that in contrast to our mobility model which considers all bowing lengths, traditional models consider
only one bowing length (l̄b0). This is analogous to the difference between the Debye and Einstein models for specific
heat; Einstein simplified the analysis by assuming that all phonons could be represented by a single frequency (rather
than a spectrum). The Einstein model predicts an incorrect temperature-dependence of the specific heat at low
temperatures, whereas the Debye theory correctly captures it

(∝ T3). It remains to be seen if this feature of the analogy
carries through into the analysis here.
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increasing stress and temperature. A conclusive justification for these observations has
yet to be presented. Sills et al. showed a similar length-dependence in kineticMonte Carlo
simulations based on the solid solution strengthening model of Leyson et al. (2010), but a
fundamental explanation is still lacking.
Using the mobility model presented above, we can identify a plausible physical explana-

tion. According to Eq. (10), in order for the mobility to be length-independent, the system
size must be large enough so that the mean values of �A(lb) and t̄w(lb) in addition to
the bowing density of states nb(lb) are converged. If the system size is too small, �A(lb),
t̄w(lb), and nb(lb) may vary as the dislocation line glides through the simulation cell. For
example, if the dislocation happens to move to a location where t̄w(lb) is rather large for
all bowing lengths, then the entire dislocation line may become pinned. In other words,
the concept of a length-dependent mobility may derive from a poor statistical sampling
of the dislocation-solute interactions. We emphasize that this explanation is speculative
and that additional research is necessary to see if it bears out. Specifically, the influence
of line length on �A (lb), t̄w(lb), and nb(lb) must be quantified.

Conclusions
In this work we have analyzed dislocation line geometries obtained from MD data sets
in an effort to better understand the fundamentals of dislocation-solute interactions and
their relationship to solute strengthening and dislocation mobility in solid solution sys-
tems. Consistent with previous studies, we find that dislocation motion through a solid
solution system is well described by the theory of depinning of elastic manifolds. In such a
view, dislocation-solute interactions are categorized based on the position of the current
state (stress and temperature) relative to the depinning transition, where the disloca-
tion transitions from immobile to mobile (at T = 0 K). Before the depinning transition,
the dislocation adopts a rough shape characterized by two different roughness profiles.
Below a correlation length ξ the roughness scales as lH1 and above ξ it scales as lH2 . The
Hurst (roughness) exponent H1 is found to vary between 0.5 and 1 (σ < σc), indicating
a correlated, rough line profile. We have interpreted this roughness as being the result of
coherent line bowing over all bowing lengths below 2ξ . In contrast, H2 varies between 0
and 0.5, corresponding to uncorrelated roughness resulting from random thermal noise
and incoherent bowing induced by solute interactions. As the stress increases so too does
ξ , until at the depinning transition ξ → ∞. Above the depinning transition, the cor-
relation length drops to zero and the line adopts an uncorrelated profile with H ≈ 0.5
indicating that the solute field acts as a random noise field. These behaviors are consistent
across all temperatures considered.
The basic picture of dislocation-solute interactions which emerges from this analy-

sis is starkly different from that assumed in theories of solid solution strengthening.
Namely, we interpret the line roughness prior to depinning at scales below ξ as result-
ing from coherent line bowing over all length scales between lmin (set by the discreteness
of the lattice) and 2ξ . This interpretation brings into question the simplifying geometric
assumptions which are made in strengthening theories; primarily that the mean bow-
ing length at zero stress l̄b0 governs strength. In an effort to develop a more rigorous
formulation which is consistent with our observations, we developed a creep mobility
model which invokes the notion of a bowing density of states, nb(lb). This mobil-
ity model provides one possible route towards developing a comprehensive theory for
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dislocation-solute interactions in random solid solutions. Using this model, we were able
to provide a physically motivated explanation for the line-length-dependent dislocation
mobilities which have been observed in several recent studies of dislocation motion in
random solid solutions.
Our results demonstrate the need for more research into the fundamentals of

dislocation-solute interactions which leverage modern computational tools. Future work
should seek to better quantify the fundamental quantities which govern dislocation
motion before the depinning transition

(
nb (lb) ,�A (lb) , t̄w (lb)

)
and extend our analysis

to dislocations of other character angles, solid solution systems, solute concentrations,
and crystal structures (e.g., body-centered cubic, hexagonal closed-packed). Using these
advances in knowledge and building on the rich body of work preceding them, it may
become possible to predict strengthening and mobility from fundamental principles of
statistical physics and physical metallurgy.

Appendix A
Here we analyze the influence of the dislocation extraction algorithm (DXA) line smooth-
ing operation on the line geometry (Stukowski and Albe 2010; Stukowski 2010). DXA
operates by constructing a triangulation of the crystal lattice, and then using this trian-
gulation to form Burgers circuits and localize the dislocation line. As a result, the “raw”
dislocation line extracted by DXA is quite jagged, since it is comprised of short line seg-
ments (on the order of a lattice constant in length) from the triangulation. For example,
even if the dislocation line itself is completely straight, the raw dislocation line identified
by DXAmay be jagged (depending on its orientation relative to the lattice). To remove this
jaggedness and produce a dislocation line with a more physical geometry, DXA employs
a two step process. First, the line is “coarsened” by removing some of the nodes. And
secondly, the line is “smoothed.” Since the analysis here is focused on the details of the dis-
location line geometry, there is a concern that the coarsening and smoothing operations
could introduce artifacts.

Fig. 12 Comparison of roughness plots with and without coarsening and smoothing (C&S) in DXA
Roughness plots with and without for C&S at two different temperatures and stresses
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To examine the influence of coarsening and smoothing (C&S), we show in Fig. 12 the
roughness curves at two temperatures and stresses with and without C&S. Figure 12
shows that the roughness curves are nearly identical except at small bowing lengths l.
Specifically, we find that the dislocation lines are rougher at bowing lengths below about
30 Å when C&S is not applied. This makes sense because the raw dislocations are quite
rough at small length scales as a result of the triangulation. One way to interpret this
result is that at bowing lengths below 30 Å, the results should be considered “untrust-
wothy” since they are apparently influenced by the details of how the dislocation lines are
extracted. A simple way to avoid this issue is then to truncate datasets below l < 30 Å.
When the data is truncated in this way, the main influence is that small ξ values become
difficult to compute reliably. In terms of the major results presented in Fig. 10, the val-
ues of ξ at high stress are affected by the data truncation. For this reason, we indicate our
uncertainty in these plots as a gray area.
It is important to note that some sort of smoothing operation is inevitable when extract-

ing dislocations from atomistic datasets, even if the smoothing is implicit. For example,
Geslin and Rodney (2018) extracted dislocation lines by averaging atomic positions in the
dislocation core using bins of a specified width. In this case, the chosen bin width selects
the smoothness of the dislocation lines.
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