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Abstract
One of the most intriguing phenomena under radiation is the self-organization of
defects, such as the void superlattices, which have been observed in a list of bcc and
fcc metals and alloys when the irradiation conditions fall into certain windows defined
by temperature and dose rate. A superlattice features a lattice parameter and a crystal
structure. Previously, it has been shown that the superlattice parameter is given by the
wavelength of vacancy concentration waves that develop when the uniform
concentration field becomes unstable. This instability is driven thermodynamically by
vacancy concentration supersaturation and affected by the irradiation condition.
However, a theory that predicts the superlattice symmetry, i.e., the selection of
superlattice structure, has remained missing decades after the first report of
superlattices. By analyzing the nonlinear recombination between vacancies and
self-interstitial-atoms (SIAs) in the discrete lattice space, this work establishes the
physical connection between symmetry breaking and anisotropic SIA diffusion,
allowing for predictions of void ordering during defect self-organization. The results
suggest that while the instability is driven thermodynamically by vacancy
supersaturation, the symmetry development is kinetically rather than
thermodynamically driven. The significance of SIA diffusion anisotropy in affecting
superlattice formation under irradiation is also indicated. Various superlattice structures
can be predicted based on different SIA diffusion modes, and the predictions are in
good agreement with atomistic simulations and previous experimental observations.

Introduction
Self-organization and pattern formation have been widely observed in various far-from-
equilibrium systems. As an effective tool to create far-from-equilibrium environments,
radiation has been commonly known to produce point and extended lattice defects
in crystals, usually with disordered distributions. The surprising observations of self-
organization phenomena under radiation such as compositional patterning (Enrique and
Bellon 2000), nanodroplet (Wei et al. 2008), periodic walls of vacancy loops and stack-
ing fault tetrahedrons (Jager and Trinkaus 1993), and void superlattice (Evans 1971), have
caught intensive research interests. In particular, the formation of void or bubble super-
lattices has been reported in both metallic and ionic systems under different radiation
conditions including neutron, ion, and electron irradiation, as summarized in previous
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reviews (Krishan 1982; Ghoniem et al. 2001). The self-organization of void superlattices
is not only scientifically fascinating, but also a promising way to mitigate swelling and
He embrittlement, which are critical concerns on the structural materials used in nuclear
reactors, by forming high density of nanoscale voids/bubbles instead of large ones. Simi-
lar mitigation may also be achieved by tailoring the spatial distribution of voids/bubbles
using nano-layered alloys (Chen et al. 2017). Moreover, it suggests a promising way of tai-
loring material microstructure using radiation for novel properties. However, albeit their
strikingly interesting nature and numerous observations, the governing physics that leads
to superlattices formation is yet to be fully discerned.
Similar to atomic lattices, void superlattices adopt certain crystal structures. The crystal

structure of an atomic lattice is usually defined by long-range and short-range thermo-
dynamic interactions between atoms. Similar interactions exist between nanoparticles
forming superlattices (Shevchenko et al. 2006). As to void superlattices, a possible such
interaction is the elastic interaction between voids, which can be anisotropic and leads
to void ordering (Malen and Bullough 1971). However, this ignores the influence of
radiation conditions, against experimental observations, and is unable to explain the for-
mation of superlattices in elastically isotropic W (Sikka and Moteff 1972). Without such
thermodynamic interactions, what drives the ordering of voids?
It has been long realized that during defect accumulation under continuous irradia-

tion, the mean defect concentration fields can lose stability to modulated waves at a
certain critical point (Krishan 1980; Walgraef et al. 1996). Such a dynamic instability
breaks the translational symmetry, thereby giving a characteristic length which is related
to the superlattice parameter. In particular, by introducing thermodynamic description of
vacancies, an analytic solution is derived for the characteristic length (Gao et al. 2018a).
Similar to the so-called chemical freeing of phase separation in reaction-diffusion systems
(Carati and Lefever 1997), such a characteristic length is stabilized by the competition
between phase separation kinetics and defect dynamics. However, the appearance of a
single characteristic length is insufficient to define a lattice. Therefore, further symmetry
breaking process is required to explain the selection of superlattice structure. Two main
hypotheses have been proposed in the literature; both have been successful in explaining
superlattice formation in different material systems without necessarily excluding each
other. The first one states that, based on experimental observations, the superlattices
are isomorphic with the hosting matrices for unknown reasons. This theory, albeit the
unknown physics behind, has remained to be consistent with most experimental results
except for recent observations of fcc superlattices in bcc UMo (Gan et al. 2015) and bct
superlattices in bcc Mo (Sun et al. 2018). The second is the so-called shadowing effect.
Assuming that SIAs perform one-dimensional (1D) diffusion along a family of crystal
axes, voids aligned along the SIA diffusion directions can shield each other from being
annihilated by incoming SIAs (Forreman 1972; Woo and Frank 1985). This hypothe-
sis is appealing because it is consistent with most experimentally observed superlattice
structures. Considering 1D SIA diffusion, superlattice formation has been reproduced by
kinetic Monte Carlo (KMC) (Heinisch and Singh 2003) and phase field (Hu and Henager
2009) simulations. The 1D SIA diffusion assumption is also supported by atomistic cal-
culations in bcc metals (Nguyen-Manh et al. 2006). However, it is regarded as against
the common observations of planar void ordering at early stage of superlattice formation.
Alternatively, the planar ordering can be explained by 2D SIA diffusion (Evans 2006). Such
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controversies call for a fundamental understanding of the physical connection between
anisotropic defect diffusion and symmetry breaking.
Following the rate theory based instability analysis (Gao et al. 2018a), this study

addresses possible symmetry breaking induced by anisotropic defect diffusion. By ana-
lyzing the nonlinear recombination between vacancies and SIAs in the discrete lattice, it
is found that, when instability in the vacancy concentration field occurs, the selection of
wave directions depends on SIA diffusion anisotropy. The recombination rate becomes
dependent on the directions of perturbation waves. Minimums in the recombination rate
are obtained for waves that are along certain crystal directions. As a result, these waves are
favored to grow over others , because the recombination rate contribute negatively to the
growth rates of perturbations. This suggests a theoretical connection between anisotropic
defect diffusion and symmetry development during defect self-organization under irra-
diation. The corresponding superlattice structures that develop after instability can be
predicted by analogizing the wave planes to the close-packed planes in crystals. With
various SIA diffusion modes, the theoretically predicted superlattice structures are con-
sistent with those from atom kinetic Monte Carlo (AKMC) simulations and experimental
observations.

Methodology and computation details
The rate theory framework for defect evolution under irradiation

Although the current work focuses only on the nonlinear recombination of vacancy and
SIAs, the rate theory framework for instability analysis (Gao et al. 2018a) is still needed to
show how the recombination rate affects the growth rates of perturbation waves, and it is
presented in the following. Theoretical predictions of the formation condition (tempera-
ture and dose rate) and the characteristic wavelength have been done elsewhere (Gao et
al. 2018a).
In the rate theory, the lattice defects produced by irradiation are represented by the

concentrations of vacancies (cv) and SIAs (ci) (Bullough et al. 1975). Replacing the Fickian
diffusion by free energy (F) driven Cahn-Hilliard dynamics (Cahn 1961) leads to the below
evolution equations for cv and ci (Gao et al. 2018a):

∂cv
∂t

= P(1 − cv) + � · Mv�(
δF
δcv

) − Kivcicv − k2vsDvcv

∂ci
∂t

= P(1 − cv) + � · Mi�(
δF
δci

) − Kivcicv − k2isDici
(1)

In the above equations subscripts i, v and s represent SIA, vacancy, and sink, respec-
tively. P is the production rate in unit of displacement-per-atom per second, dpa/s. It is
multiplied by (1 − cv) to ensure defect production in the bulk only but not in the voids
where cv = 1. M is the atomic mobility and is given by M = D/2KBT following the con-
stant mobility version of the Cahn-Hilliard equation for void superlattice formation (Hu
and Henager 2009). Here D is the diffusivity, KB the Boltzmann constant and T temper-
ature. Kiv is the recombination constant between vacancy and SIA, usually expressed as
Kiv = 4πRiv(Di+Dv)

�
, with Riv being the recombination radius between vacancy and SIA,

and � being the atomic volume. k2Xs is the sink strength, with X = i for SIA and X = v for
vacancy, respectively.
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The terms on the right-hand side of Eq. 1 represent in turn production, transport,
mutual recombination between vacancies and SIAs, and their absorption by sinks. Com-
pared to the often usedmean-field rate theory framework (Bullough et al. 1975), the above
description considers the thermodynamics of vacancies with spatially dependent vacancy
concentration. Such a consideration is of particular importance as it allows the formation
and migration of voids driven by the free energy. The voids, effectively represented by
cv=1 in local regions, can precipitate out as void phase precipitates from a over-saturated
matrix phase, in a way similar to phase separation in immiscible regular solid solution.
Mathematically, they can be regarded as perturbations in the concentration field, and can
either grow or shrink depending on the growth rate. Such an approach has widely been
used for void formation under irradiation using the phase field method (Hu and Henager
2009). Focusing on the vacancy concentration, the evolution rate can be re-written as:

∂cv
∂t

= � · Mv�(
δF
δcv

) − (P + Kivci + k2vsDv)cv + P (2)

The three terms in the right hand side of Eq. 2 describe Cahn-Hilliard phase sepa-
ration dynamics, chemical reaction and a source term, respectively. Consider a small
perturbation wave c̃v(k) with non-zero k, whose evolution is given by:

∂ c̃v
∂t

=[−Mvf ′′k2 − Mvκk4 − (P + Kivci + k2vsDv)] c̃v = R(k)c̃v (3)

Here f ′′ is the second-order derivative of the bulk free energy density f with respect to
cv. κ is associated with surface energy. When cv is low, the growth factor R(k) is negative
for any non-zero k, implying that the uniform concentration field is stable. As irradi-
ation dose increases, cv increases. Once cv is above a critical value inside the spinodal
zone, the uniform concentration loses stability to perturbation waves with a critical wave-
length, whose growth rates transitions the first from negative to positive. The instability is
actually a spinodal phase separation process driven thermodynamically by vacancy super-
saturation and also affected by the reaction term for defect annihilation. This is similar
to the case in a nonequilibrium superconducting film (Scalapino and Huberman 1977).
The critical wavelength has been derived elsewhere as λc = 2π

kc = 2π( κMv
(P+Kivci+k2vsDv)

)1/4;
here kc is the critical wavenumber (Gao et al. 2018a). Each of the concentration waves
represents a close-packed plane of the superlattice, with the wavelength corresponding to
the interplane distance. As such, the superlattice parameter is associated with the critical
wavelength and it shares the dependence on the surface energy via κ , the vacancy mobil-
ityMv, the defect production rate P, and the vacancy annihilation rate (Kivci + k2vsDv). As
the analytical solution shows, the superlattice parameter increases with increasing tem-
perature and decreasing dose rate. It should be noted that such instability takes place only
in certain irradiation conditions defined by temperature T and dose rate P, as has been
shown in the literature (Ghoniem et al. 2001). At very high dose rate P or low temper-
ature T, the system is in the recombination-controlled regime and the critical vacancy
concentration will never be reached (Gao et al. 2018a). At very low dose rate P or high
temperature T, sink absorption dominates, and voids may lose thermal stability due to
vacancy emission (Ghoniem et al. 2001).
The previous analysis (Scalapino and Huberman 1977; Gao et al. 2018a) concerned only

the development of the critical wavelength, which is related to the superlattice param-
eter but has no contribution to defining the superlattice structure. Note that the wave
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vector k comprises a wavelength (or wave number, k0) and a direction k̂. Only the wave-
length was considered in the previous analysis. As will be shown below, when SIAs diffuse
anisotropically, the growth rate R(k) becomes anisotropic with respect to the wave direc-
tion k̂. Such an anisotropy in R(k) comes from the recombination term. The other terms,
such as the even-order terms, the source and the sink terms, are apparently independent
of k̂. As shown in Eq. 3, the recombination rate correlates negatively with the growth
rate R. Therefore, with the same wavelength, waves along directions associated with
minimal defect recombination will be favored over others. By numerically assessing the
dependence of the recombination rate on the directions of perturbation waves, the most
favorable wave directions can be obtained. These wave directions define the normals of
close-packed planes and thereby the superlattice structure.

Defect recombination with perturbations

For their opposite nature, vacancies and SIAs recombine immediately when they are
within a certain distance - the recombination radius, Rrec - from each other. The
recombination rate with uniform concentrations c0v and c0i is given by:

Kivc0vc
0
i = (Ki

iv + Kv
iv)c

0
vc

0
i = Nnewc0i c

0
v(ωi + ωv) (4)

In Eq. 4, Ki
iv and Kv

iv represent the fractions of recombination induced by SIA diffusion
and vacancy diffusion, respectively.Nnew is the number of lattice sites entering the recom-
bination radius of a point defect after each atomic hop; ωi and ωv are the hopping rates of
SIA and vacancy, respectively. In typical materials at the conditions for superlattice for-
mation, ωi >> ωv, so that Kiv ∼= Ki

iv. In the following, we will focus on SIA diffusion
only. In deriving Eq. 4, it is assumed that the defect concentrations are uniform before
instability, but the defect fields are dynamically evolving due to diffusion and defect pro-
duction. With such an assumption, Eq. 4 is applicable for both 1D and 3D SIA diffusion.
We note that in the literature a different expression has been used for the recombination
rate when SIAs perform 1D diffusion (Amino et al. 2011), which followed the analysis
of annihilation of 1D diffusing SIA clusters at static traps such as voids (Barashev et al.
2001). In bcc metals such as Mo andW, SIAs diffuse much faster than SIAs. Accordingly,
the SIA concentration is usually much lower than that of vacancy when defect sinks exist.
In particular, cvDv ≈ ciDi when the system is approaching the steady state. Because the
evolving rate of a defect field due to diffusion depends on both the concentration and the
corresponding diffusivity, a similar evolving rate for vacancies is expected to that for SIAs
at the steady state. This, plus the change caused by defect production, suggest that the
vacancy field is more likely dynamically evolving than being static under irradiation. Such
an assumption is backed up by our AKMC simulations in situations when ciDi ≈ cvDv
(please see the Appendix C of the Supplementary Material).
The recombination rate is affected by the appearance of perturbation. Consider a small

perturbation c̃v = δvexp(ik · r) on top of c0v . Due to the nature of mutual recombi-
nation, this will induce a simultaneous anti-phase perturbation in c0i , denoted as c̃i =
−δiexp(ik · r). With this, the averaged recombination rate induced by SIA diffusion is
given by:
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Kivcicv = Kivc0vc0i + 1
2
Kivδiδvσkλ ∼= Nnewωi(c0i c

0
v (5)

−1
2
δiδv

li∑

m=1
qm−1
0 < exp(ik · λm) >λm /

li∑

m=1
qm−1
0 ) (6)

Here li is the SIA mean free life, defined as the average number of hops before an SIA
is recombined. It can be estimated as li ∼= 1/(Nnewc0v) in the recombination dominant
situation. q0 is the averaged probability that an SIA is not recombined after an atomic
hop. λm is the current SIA position after m hops in reference to its original position. An
average over λm is needed for the stochastic nature of atomic hops. For convenience, the
symbol σkλ is used to represent the summation term, i.e.,

σkλ = −
li∑

m=1
qm−1
0 < exp(ik · λm) >λm /

li∑

m=1
qm−1
0 (7)

The derivation of Eqs. 4 to 7 is given in the Appendix B of Supplementary Material.
The dependence of recombination rate on wave direction k̂ can be elucidated by numer-
ically computing σkλ, which represents the reduction in recombination rate caused by
perturbations. The detailed calculation procedure is given at the end of Appendix B in
the SupplementaryMaterial. Unless otherwise stated, a bcc matrix with Rrec being the 2nd

nearest neighbor(NN) distance (so that Nnew = 7) is used. A vacancy concentration of
0.001 is taken to estimate li. For reference, the vacancy concentrations is at an order of 0.01
(converted from the void size and density) in metals where void superlattices have formed
(Ghoniem et al. 2001). We note that an accurate estimate of li is not actually needed for
the purpose of predicting symmetry development. The same anisotropy in σkλ holds as
long as li is larger than the recombination radius. In cases that SIAs perform 1D diffusion
along symmetrical directions, e.g., the 〈111〉 family in bcc, or 2D diffusion within symmet-
rical planes, SIAs are divided into ni groups equally, with ni being the fold of symmetry
of SIA diffusion. The calculation of σkλ runs over all ni groups and is then normalized by
ni. The numerical results of σkλ are plotted as a function of wave directions k̂ to elucidate
the anisotropy.

Atomic kinetic Monte Carlo simulations

To demonstrate the symmetry breaking predicted by Eqs. 5 and 7, rigid lattice AKMC
simulations are carried out following the method in REF (Gao et al. 2018a). Here, vacancy
and SIA are denoted as types of elements occupying and diffusing on a prescribed,
static lattice. Three types of atoms are used to represent matrix atom, vacancy, and SIA,
respectively. The interaction between atoms are described by pairwise bonds within the
2NN cutoff. The bond energies between matrix atoms and vacancies are fitted using the
vacancy formation energy and the surface energy, thereby defining a free energy model
analogous to that for a binary regular solution. This is consistent with the free energy
model used in the rate theory description. The interactions between SIAs and between
SIAs and matrix atoms are ignored for their extremely low concentration in the simula-
tions. The rigid-lattice based AKMC method is used for two reasons. First, the current
methodmeets the requirement on efficiency for simulating large numbers of point defects
and long physical time. The more accurate on-the-fly and off-lattice KMCmethods, such
as the SEAKMCmethod (Xu et al. 2013), are more powerful in capturing individual defect
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evolution, but less efficient for long-term evolution of a large amount of defects. For the
same reason, the interatomic interaction and the migration barriers are calculated using
a pairwise bond model, instead of using an interatomic potential and the advanced bar-
rier searching methods such as the dimer method (Gao et al. 2000). Second, the current
AKMC method is more consistent with the rate theory description, thereby suitable for
demonstrating the predictions by the rate theory.
For KMC simulations, the system is evolved following the residence-time algorithm

(Soisson and Fu 2007). At each KMC step, a list of diffusion events, i.e., atomic jumps
of vacancies and SIAs, are created. The probability of each event i is given by τi =
ν0exp(−Ei/KBT). Here ν0 is the attempt rate. One event is randomly selected to advance
the system, and the system time is advanced by 1/

∑
i τi. The diffusion of vacancies

and SIAs are simulated by switching with nearest neighbor (NN) atoms. For vacancy,
the switching is done with a randomly selected 1st NN, representing isotropic diffusion.
Both isotropic and anisotropic SIA diffusion are simulated. For isotropic diffusion, SIAs
are switched with a randomly selected 1st NN. For anisotropic SIA diffusion, SIAs are
switched with a randomly selected 1st NN along a given crystal orientation for 1D diffu-
sion, or within a given crystal plane for 2D diffusion, respectively. SIAs are divided into
ni groups if they diffuse along ni symmetrical directions or in ni symmetrical planes,
with each group diffusing along one direction or within one plane. The diffusion bar-
rier is calculated by Ea = E0 + (Ef − Ei)/2, and updated once the local environment is
changed (Soisson and Fu 2007). Here E0 is the diffusing barrier at the dilute concentra-
tion regime, and Ef − Ei is the energetic difference between the states after and before an
atomic hopping, considering the dependence on local environment. Note that this gives
a constant activation barrier E0 for SIAs because they are ignored in the thermodynamic
consideration.
In addition to diffusion events, the below athermal events are also simulated:

• Defect production: To simulate defect production, Frenkel pairs are inserted at a rate
of one pair per time interval tfp, corresponding to a defect production rate
P = (tfp ∗ Na)−1, with Na being the total number of atoms used in the simulations.
Different production rates can be simulated by adjusting tfp. For each insertion, two
lattice atoms are randomly selected, one assigned as vacancy and the other as SIA.
Such a defect production method is consistent with the rate theory description, and
it corresponds to the situation of electron irradiation.

• Recombination: After the production or jump of a point defect, possible
recombination will be carried out. Defects of the opposite nature within the
recombination radius will both be assigned as matrix atoms, to represent
recombination. To be consistent with the theoretical analysis, the recombination
radius is set to be the 2nd NN distance.

• Sink absorption: A mean field sink, represented by a mean free jump (Gao et al.
2018a), is implemented for both vacancy and SIA, by using a static sink strength that
can be converted from the density of pre-existing dislocations (Wiedersich 1972).
Defects that have migrated for times more than their mean free jumps will be
eliminated by converting them back to matrix atoms. Alternative to the mean field
sink, planar sinks can also be simulated by assigning a region in the simulation cells as
sink. Defects that migrate into this region will be converted to matrix atoms,



Zhang et al. Materials Theory             (2020) 4:4 Page 8 of 17

representing sink absorption. The mean field sink is used in the simulations unless
stated otherwise. The planar sink is used to study the effect of heterogeneously
distributed sinks.

The AKMC simulations are done with either 2D square and 3D cubic cells with peri-
odic boundary conditions (PBCs). The simulation cell sizes are described along with the
results. Both the simulation cell size and shape have been varied to confirm that there is
no artificial effect caused by the PBC. For each simulation, we start from defect free simu-
lation cells. Frenkel pairs are then introduced at given dose rates for defect accumulation.
When there is no defects in the system, the KMC time is advanced by the time interval
tfp with a Frenkel pair introduced. We rely on the stochastic nature of KMC simulations
for perturbations, meaning that no perturbation is manually introduced in addition to the
above KMC events.
The material parameters for bcc Mo (Gao et al. 2018a) are used to derive the bond

energies and diffusion barriers. Specifically, the vacancy formation energy is 2.9 eV; the
surface energy is 2.95 J/m2; the SIA (vacancy) migration barrier is 0.083 eV (1.45 eV); the
attempt rate is 1.0×1012/s for both vacancy and SIA; the mean free jump before being
absorbed by a sink is 1000 for both vacancy and SIA.
Because the AKMC simulations are used to confirm the theoretical predictions of

superlattice structures, we purposely choose irradiation conditions in which superlattice
are expected to form. To save computation time, a high dose rate of 9.8 dpa/s and a high
temperature of 973 K are used. To confirm that the superlattice structures are not affected
by the dose rate and temperature used, simulations with lower dose rates have also been
performed. Note that a lower temperature may need to be used when a much lower dose
rate is used, as suggested by the P-T diagram for superlattice formation (Ghoniem et al.
2001; Gao et al. 2018a). For clarity, in presenting AKMC results only vacancies are shown
as dark dots to elucidate potential ordering.

Results
Symmetry breaking induced by anisotropic SIA diffusion

Several important points are readily clear from Eq. 5. First, the occurrence of perturba-
tions reduces the recombination rate because c̃v and c̃i always occur simultaneously with
antiphase due to the nature of mutual recombination, e.g., increasing in one will simulta-
neously induce a reduction in the other. The reduction is negligible when c̃v << c0v and
c̃i << c0i , with negligible changes in the critical wavelength. Second, the recombination
rate depends on the wave vector k (= k0k̂) and the SIA diffusion property via λm. When
SIA diffuses isotropically, σkλ is symmetrical about k̂ and depends only on k0. While SIA
diffuses anisotropically, the dependence on k̂ can lead to symmetry breaking.
We start with the dependence of σkλ on k0 and k̂ before applying the theory to realistic

cases. For this purpose, a case study is carried out considering the [1 1 1] 1D SIA direction
(not the 〈111〉 family) in a bcc crystal. Three wavelengths, 0.5li (lik0 = 4π ), 2li and 10li, are
considered in calculating σkλ. As shown in Fig. 1, σkλ is anisotropic about k̂ and increases
monotonically as k̂ moves away from the (1 1 1) plane towards the plane normal, [1 1 1] -
the 1D SIA diffusion direction. Following Eq. 5, �k · λm = 0 is satisfied for any k in (1 1 1)
plane because λm parallels [1 1 1], giving a minimum of -1 for σkλ. The same anisotropy
in σkλ with respect to k̂ holds for all wavelengths, but the degree of anisotropy decreases
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Fig. 1 (Color online) Normalized change in recombination (σkλ) caused by perturbation waves with 1D SIA
diffusion along the [1 1 1] direction in a bcc crystal. The wavelength used in the calculation is a 0.5, b 2.0, and
c 10.0 of SIA mean free life, li

with increasing wavelength, as shown in Fig. 1a-c. The dependence of recombination on
k has profound effects on vacancy ordering. For its negative sign in Eq. 3, recombina-
tion tends to diminish perturbation waves.With anisotropic SIA diffusion, recombination
becomes anisotropic with respect to k̂. With the same wavelength, waves along directions
that are associated with minimum recombination rates have the highest growth rates,
and are thereby favored to grow over others. The development of waves along favorable
directions can lead to symmetry breaking during defect self-organization. The anisotropy
in recombination fades as the wavelength increases, suggesting weak ordering for long
waves, e.g., when the distance between voids is large.

AKMC confirmation of void ordering

Four case studies are designed and carried out to further demonstrate the theoretical
predictions of symmetry breaking and void ordering. To focus on symmetry, we further
average the results over k0 by varying k0 from 2π/li to π/2, to take out the dependence on
wavelength. A wavenumber larger than π/2 may result in unphysically small wavelength.
Accordingly, AKMC simulations are carried out to confirm the theoretical predictions.
Note that superlattices form only in appropriate conditions defined by dose rate and
temperature. To demonstrate superlattice structure selection, the AKMC simulations are
done in conditions where superlattices are expected to form.
Case I considers 1D SIA diffusion in a 2D square lattice (Nnew = 3), Fig. 2a. The

recombination is reduced the most along the k2 ([0 1]), and the least along k1 ([1 0]), cor-
responding to minimums and maximums in σkλ, respectively, as shown in Fig. 2b. As a
result, waves along k2 will be favored to grow over others. When a critical vacancy con-
centration is reached, a wavelength will be selected at the instability point (Gao et al.
2018a). As such, a [0 1] wave will develop, and voids will precipitate at the wave peaks
for the locally high vacancy concentration, with a [1 0] alignment. Eventually, stripes nor-
mal to [0 1] form, showing the favorable growth of [0 1] waves caused by [1 0] 1D SIA
diffusion.
Case II considers 1D SIA diffusion along [1 1 1] in 3D. As shown in Fig. 3a, with [1 1 1]

1D SIA diffusion, waves with a k̂ in the (1 1 1) plane are equally favored. When projected
along [1 1 1], a random distribution of voids (actually a column of voids aligned along [1
1 1]) with a characteristic length should be expected after instability takes place. This is



Zhang et al. Materials Theory             (2020) 4:4 Page 10 of 17

Fig. 2 (Color online) a 1D SIA diffusion and two perturbation waves in cv (solid curves) and ci (dash); b
normalized change in recombination (σkλ); c Atomic configuration at 2.4 dpa from an AKMC simulation
showing the development of a k2 wave. The simulation cell size is 160×160 a20 (a0 is the matrix lattice
parameter)

indeed observed in AKMC shown in Fig. 3d. The appearance of a ring in the fast-Fourier-
transformation (FFT) image indicates the existence of a characteristic length but not a
symmetry. In both case I and II, voids align along the 1D SIA diffusion directions when
instability occurs, consistent with the shadowing effect hypothesis (Forreman 1972; Woo
and Frank 1985).
In case III, 1D SIA diffusion along both [1 1 1] & [-1 1 1] in bcc is considered. In this

case, the minimum recombination is reached at k̂ = [0 -1 1]. This means a [0 -1 1] wave
with the selected wavelength will develop at the instability point, as shown by the AKMC
simulation in Fig. 3e. The FFT inset also indicates the appearance of a plane wave. It is cri-

Fig. 3 (Color online) Normalized change in recombination (σkλ) with 1D SIA diffusion along a [1 1 1], b [1 1 1]
& [-1 1 1], and c all 〈111〉. d-f Void ordering predicted by AKMC simulations in bcc Mo with the SIA diffusion
modes in (a)-(c). The simulation cell size is 80×80×80 a30
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tical to note that in this case, void alignment along [1 1 1] & [-1 1 1] becomes unnecessary,
in contrast to the shadowing effect. Indeed, no such alignment can be seen in Fig. 3e.
In the last case (IV) we consider realistic 1D SIA diffusion along all 〈111〉 direc-

tions, as in bcc metals suggested by atomistic calculations (Nguyen-Manh et al. 2006).
In this case, the minimum recombination rate is reached along all six 〈110〉 directions,
as shown in Fig. 3c (three at the edge of sphere are not visible due to projection).
This is consistent with previous analysis showing that aligned voids along the closed-
packed directions receive less recombination and higher vacancy flux (Semenov and
Woo 2006). Therefore, six 〈110〉 waves with the same wavelength are expected, and
their superposition gives a bcc superlattice, as shown in Fig. 3f and the inset FFT.
While cases I-III are designed to demonstrate the theory, case IV is realistic and it
explains the bcc superlattice formation widely observed in experiments (Krishan 1982;
Ghoniem et al. 2001).
The above analysis is not limited to 1D SIA diffusion. Actually, any SIA diffusion mode

can be considered by sampling λm in a statistical way. By varying the SIA diffusion mode,
many superlattice structures can be predicted, as summarized in Table 1, including 2D
square and hexagonal, 3D simple cubic (sc), bcc and fcc, consistent with experimental
observations (Ghoniem et al. 2001; Krishan 1982; Gan et al. 2010; Johnson and Mazey
1980). This confirms that the symmetry of void superlattices is not governed by thematrix
structure, but by the diffusion property of SIAs (Woo and Frank 1985), as shown by pre-
vious phase field (Hu and Henager 2009; Hu et al. 2016; Gao et al. 2018b) and KMC
simulations (Heinisch and Singh 2003; Evans 2006; Gao et al. 2018a). This is also consis-
tent with Walgraef et al. (1996), which showed that a small anisotropy in SIA diffusion is
needed for vacancy loop ordering. The good agreement between the theoretical predic-
tions and the simulations and the experimental observations is very encouraging. While
the validity of Eq. 4 depends on a critical assumption that the vacancy field is dynami-
cally evolving, instead of being static as in Ref. (Amino et al. 2011), this assumption is
not used in the AKMC simulations. The consistency between the predicted results and
those from simulations shown in Table 1 suggest that the assumption is appropriate for
the conditions considered here.

Table 1 Theoretical predictions of void/bubble ordering versus atomic kinetic Monte Carlo
simulations and experimental observations

Matrix bcc bcc bcc bcc fcc fcc 2D sq 2D hex

SIA diff. 1D 1D 1D 2D 1D 2D 1D 1D

mode 〈111〉 〈110〉 〈100〉 {1 1 0} 〈110〉 {1 1 1} 〈10〉 [10] &〈11〉
Theory bcc fcc sc bcc fcc fcc sq hex

Simulation bcc (Gao et
al. 2018a; Hu
and Henager
2009)

fcc
(Heinisch
and Singh
2003;
Gao et al.
2018a; Hu
et al. 2016)

sc (Gao et
al. 2018a)

bcc
(Evans
2006;
Gao
et al.
2018a)

fcc (Gao et
al. 2018a;
Hu et al.
2016)

fcc (Gao et
al. 2018a)

sq (Gao et
al. 2018a)

hex (Gao et
al. 2018a)

Experiment bcc (Evans
1971; Sikka
and Moteff
1972)

fcc (Gan et
al. 2010)∗

fcc (John-
son and
Mazey
1980)∗∗

*The SIA diffusion model in bcc UMo is yet to be confirmed
**In fcc SIA clusters rather than individual SIAs perform 1D diffusion
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Several important points need to be emphasized on the comparison between theoret-
ical predictions and experimental observations and previous simulations. It is predicted
that superlattice structure is dictated by SIA diffusion mode. With the same host matrix
structure, e.g., bcc, both bcc and fcc superlattices can form, by 〈111〉 and 〈110〉 SIA
diffusion, respectively. This is consistent with the experimental observations of bcc super-
lattices in bcc Mo (Evans 1971) and W (Sikka and Moteff 1972), in which SIAs are
predicted to diffuse along 〈111〉 (Nguyen-Manh et al. 2006), and of fcc superlattice for-
mation in bcc UMo (Gan et al. 2015), in which SIAs are suggested to diffuse along
〈110〉 (Hu et al. 2016). In addition, sc superlattices have been observed in the anion
sublattice of CaF2 and SrF2, and the cause was attributed to 〈100〉 anion SIA diffu-
sion (Johnson and Chadderton 1983). Indeed, it is predicted here that, with 〈100〉 SIA
diffusion, sc superlattices should be expected. It is also interesting to notice that the
same superlattice structure can result from different SIA diffusion modes. For instance,
a bcc superlattice can form with either 〈111〉 1D SIA diffusion or {1 1 0} 2D SIA dif-
fusion, as has been shown in previous KMC simulations (Evans 2006) and confirmed
by our AKMC simulations. In the latter case SIA diffusion along each {1 1 0} plane
will stabilize a favorable {1 1 0} wave in cv. It should be noted that previous atomistic
calculations suggest 〈111〉 SIA diffusion in most bcc metals including Mo and W
(Nguyen-Manh et al. 2006).

Characteristic stages of superlattices formation

The above analysis clearly suggests that superlattices form by superposition of symmetri-
cal concentration waves that develop at the instability point. This means that the widely
accepted void alignment along the 1D SIA diffusion direction is an unnecessary con-
dition for superlattice formation, although it may still occur in special cases where the
preferred wave directions parallel the 1D SIA diffusion directions, e.g., in cases I and
II. Instead, the current theory suggests that superlattice formation may possibly take a
3-stage process involving a planar void ordering. The first stage is before instability, in
which unstable voids form randomly. They can be regarded as unstable perturbations that
decay exponentially. The second stage starts from the instability point, at which selected
waves shown as stable voids start to develop. The instability is driven thermodynamically
by vacancy concentration supersaturation. At finite temperatures, these waves may not
develop at the same time due to stochastic effects. One or more waves will develop first,
giving a planar ordering of voids. In the third stage, all preferred waves will develop and
form 3D superlattices. Once the superlattices form, 1D alignment of voids may appear as
a consequence rather than the reason of superlattice formation. Therefore, its absence at
the early stage should not be interpreted as an evidence against 1D SIA diffusion. At low
temperatures, the second stage may not be as clear as at high temperatures due to less
stochasticity.
The 3-stage superlattice formation process can be clearly demonstrated using AKMC

simulations. Here, 1D SIA diffusion along all 〈111〉 in bcc Mo is considered. As seen
in Fig. 4a, at 0.8 dpa small voids form with a random distribution. At about 1.9 dpa,
voids start to exhibit a (1 1 0) planar ordering. Eventually, all {1 1 0} waves develop,
giving a bcc superlattice, as shown in Fig. 4c. Planar ordering of voids and gas bubbles
have been commonly observed experimentally (Evans 2006; Harrison et al. 2017). It has
been interpreted as an evidence against the shadowing effect. However, as shown by the
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Fig. 4 (Color online) 3-stage formation process of a void superlattice from AKMC simulations in bcc Mo. The
doses level is 0.8, 5.2 and 8.2 dpa in (a), (b) and (c). The simulation cell size is 40×40×40 a30

theoretical analysis and AKMC simulations, the planar void distribution may possibly be
a characteristic feature of superlattice formation, reflecting the wave nature of superlat-
tice nucleation, regardless of 1D and 2D SIA diffusion. The 3-stage formation process can
be seen in ion irradiated Nb (Loomis et al. 1977) but was not connected to the nature of
superlattice nucleation.

Discussion
Several assumptions used in the rate theory framework and the AKMC simulations war-
rant some discussion. The first is the mean-field production of Frenkel pairs, which is
close to the condition of electron irradiation, but different from the cases of neutron
and ion irradiation (Golubov et al. 2001). In the latter two cases a substantial fraction
of defects is produced as clusters, and the fraction can be different for vacancy and SIA
clusters. This has been treated in the production bias model (Singh and Foreman 1992)
for better modeling of swelling induced by neutron and ion irradiation. The direct pro-
duction of clusters can accelerate vacancy accumulation by reducing the recombination,
as suggested by Eq. 5. Moreover, small SIA clusters can rapidly migrate to sinks with-
out recombining with vacancies, again accelerating vacancy accumulation. As a result, at
the same temperature and dose rate, vacancies accumulate with a much lower rate under
electron irradiation than under neutron and ion irradiation. The slower vacancy accumu-
lation rate effectively delays the occurrence of instability with respect to dose. This, in
addition to the difficulty to reach high dose levels, explains why void ordering is rarely
observed (Fisher andWilliams 1977) inmetals or alloys under electron irradiation. In con-
trast, superlattices have been widely observed under ion and neutron irradiation (Krishan
1982; Ghoniem et al. 2001). Void superlattice formation has been observed in the anion
sublattice in fluoride CaF2 under electron irradiation (Johnson and Chadderton 1983;
Ding et al. 2005).
Another major assumption is the omission of SIAs from the thermodynamic descrip-

tion. This effectively excludes the formation of SIA clusters. It has been shown that
under irradiation, SIA clusters, either mobile (e.g., loops) or immobile ones (e.g., clus-
ters, loops, and tangled dislocations), can form. The immobile ones can act as sinks for
both vacancies and SIAs. As such, the overall sink density will increase. This will affect
the wavelength selection at the instability point, but not the symmetry development. The
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mobile SIA clusters usually take the configuration of loops and migrate along the Burger
vector directions. Therefore, they either rapidly reach the sink, accelerating vacancy accu-
mulation, or are annihilated by recombining with vacancies, thereby contributing to the
anisotropic recombination due to their 1D migration. Actually, 1D SIA loop migration
has been regarded as the reason for void ordering (Dubinko et al. 1989). In metals such
as bcc Fe, SIAs perform 3D diffusion and SIA clusters and loops perform 1D diffusion.
The void ordering could be caused by SIA clusters and loops, rather that individual SIAs.
In this regard, in some material systems SIA clusters could play a significant or even a
dominant role in superlattice symmetry selection. Currently, No SIA clustering is consid-
ered in the AKMC simulations. Their role in superlattice formation will be investigated
in the future by extending the current theoretical analysis and AKMC simulations. This is
needed to generalize the current analysis for materials under ion and neutron irradiation
and materials in which only SIA clusters and loops diffuse anisotropically.
While demonstrating the theoretical prediction an unrealistically high dose rate has

been used to save computation time. To minimize possible artificial effect from dose
rate, the formation of bcc superlattice in a bcc matrix with 〈111〉 1D SIA diffusion (the
case shown in Fig. 4) is repeated with several different dose rates. Four more simulations
are performed at 773 K with the dose rate being 10−3, 10−2, 10−1 and 1.0 dpa/s, and
another simulation at 973 K with the dose rate being 10 dpa/s. The simulation cell sizes
are 40×40×40 a30. Note that for lower dose rate a lower temperature is needed according
to the formation window (Ghoniem et al. 2001). For all simulations, bcc superlattices are
obtained. In general, at the same temperature, lowering the dose rate leads to an increase
in the superlattice constant, consistent with the results in the literature (Gao et al. 2018a).
To further test the effect of dose rate, the simulations shown in Fig. 3a and b are repeated
using a simulation cell size of 40×40×40 a30, a dose rate of 10−3 dpa/s and a tempera-
ture of 773 K. Again, the same types of ordering are observed in the simulations. The
results from the new simulations are consistent with the theory that the ordering of voids
is governed by the SIA diffusion property, as long as the instability takes place.
In the theoretical analysis we focus on the recombination in bulk. A mean-field

approach is used for sink absorption. While in reality, geometrical sinks are randomly
distributed. The heterogeneity of sinks may also affect void ordering. As an attempt to
explore this effect, an AKMC simulation with a planar sink is carried out. The simulation
cell size is 40×40×80 a30, with one atomic plane located at the middle of the Z direction
assigned as a planar sink. Point defects that migrate to the sink sites are annihilated by
converting them back to matrix atoms. The mean-field sink is not used in this simulation.
The dose rate used is 10−3 dpa/s and the temperature is 773 K. As shown in Fig. 5, the
introduction of a planar sink induces a denuded zone in the middle along the Z direction.
The width of the denuded zone decreases with increasing dose. Still, a bcc superlattice is
observed at 2.0 dpa, as indicated by the projections along the [100] and 〈111〉 directions
in Fig. 5c and d, receptively. This is also consistent with experiments that superlattice can
form in regions very close to grain boundaries such as twins (Wang et al. 2016). We note
the geometry of sinks considered here is much more simplified than that in real materi-
als. A dedicated study may be needed to explore the role of sinks including their strength
and spatial distribution.
The recombination analysis here is based on the assumption that the SIA diffusivity

is much higher than that of vacancy. This is true in most bcc and fcc metals but not
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Fig. 5 (Color online) Atomic configurations from an AKMC simulations in bcc Mo at 773 K with a dose rate of
10−3 dpa/s. A planar sink is introduced at the middle of the Z direction. The doses level is 0.1, 0.5 and 2.0 dpa
in (a), (b) and (c). In (d) the configuration at 2.0 dpa is tilted to along the 〈111〉 direction. The simulation cell
size is 40×40×80 a30

necessarily in all materials. When vacancy diffusivity is comparable or even higher than
that of SIA, due to the isotropical diffusion of vacancies, the anisotropic effect induced
by anisotropic SIA diffusion will become less significant. Different ordering phenomena
may occur in such a situation (Gao et al. 2019). It should be noted that a much higher SIA
diffusivity than that of vacancy has been postulated as a criteria for superlattice formation
(Hu and Henager 2009).

Conclusion
To conclude, this work presents a discrete lattice theory concerning the patterning of
voids caused by anisotropic SIA diffusion. The discrete lattice analysis is based on the
same rate theory framework that was used to predict the critical wavelength, which cor-
responds to the void superlattice constant. It is now possible to use the unified rate theory
framework to predict both the superlattice constant and structure. Therefore, the the-
ory is expected to be impactful to guide experiments for tailored microstructure under
radiation. With validations by atomistic simulations and experiments, several important
implications can be drawn from the discovery: i) The superlattice is a superposition of sta-
ble perturbation waves at the instability point, whose symmetry is dictated by anisotropic
SIA diffusion. This is consistent with the shadowing effect (Forreman 1972; Woo and
Frank 1985) and the conclusion of Walgraef et al. that a small degree of SIA diffusion
anisotropy is needed for vacancy loop ordering (Walgraef et al. 1996). The symmetry of
these waves defines the superlattice structure, which depends on the kinetics of SIA diffu-
sion but not necessarily the host matrices; ii) A 3-stage formation process, from random
voids to planar ordering and then 3D lattice, is implied. The widely accepted theory on
void alignment along 1D SIA diffusion direction is suggested to be a consequence, rather
than the reason of superlattice formation; iii) The effect of anisotropic SIA diffusion is
scaled by the SIA mean free life. At conditions for the instability to occur, the SIA mean
free life usually varies from a few to hundreds of nanometers, rendering superlattice for-
mation a nanoscale phenomenon; iv) The symmetry breaking is induced by anisotropic
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defect diffusion via a reaction term. Similar effect may exist in other systems coupling
phase separation dynamics and chemical reaction when anisotropic mass transport is
involved.
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